123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425 |
- # This file is dual licensed under the terms of the Apache License, Version
- # 2.0, and the BSD License. See the LICENSE file in the root of this repository
- # for complete details.
- import abc
- import typing
- from math import gcd
- from cryptography.hazmat.primitives import _serialization, hashes
- from cryptography.hazmat.primitives._asymmetric import AsymmetricPadding
- from cryptography.hazmat.primitives.asymmetric import (
- utils as asym_utils,
- )
- class RSAPrivateKey(metaclass=abc.ABCMeta):
- @abc.abstractmethod
- def decrypt(self, ciphertext: bytes, padding: AsymmetricPadding) -> bytes:
- """
- Decrypts the provided ciphertext.
- """
- @abc.abstractproperty
- def key_size(self) -> int:
- """
- The bit length of the public modulus.
- """
- @abc.abstractmethod
- def public_key(self) -> "RSAPublicKey":
- """
- The RSAPublicKey associated with this private key.
- """
- @abc.abstractmethod
- def sign(
- self,
- data: bytes,
- padding: AsymmetricPadding,
- algorithm: typing.Union[asym_utils.Prehashed, hashes.HashAlgorithm],
- ) -> bytes:
- """
- Signs the data.
- """
- @abc.abstractmethod
- def private_numbers(self) -> "RSAPrivateNumbers":
- """
- Returns an RSAPrivateNumbers.
- """
- @abc.abstractmethod
- def private_bytes(
- self,
- encoding: _serialization.Encoding,
- format: _serialization.PrivateFormat,
- encryption_algorithm: _serialization.KeySerializationEncryption,
- ) -> bytes:
- """
- Returns the key serialized as bytes.
- """
- RSAPrivateKeyWithSerialization = RSAPrivateKey
- class RSAPublicKey(metaclass=abc.ABCMeta):
- @abc.abstractmethod
- def encrypt(self, plaintext: bytes, padding: AsymmetricPadding) -> bytes:
- """
- Encrypts the given plaintext.
- """
- @abc.abstractproperty
- def key_size(self) -> int:
- """
- The bit length of the public modulus.
- """
- @abc.abstractmethod
- def public_numbers(self) -> "RSAPublicNumbers":
- """
- Returns an RSAPublicNumbers
- """
- @abc.abstractmethod
- def public_bytes(
- self,
- encoding: _serialization.Encoding,
- format: _serialization.PublicFormat,
- ) -> bytes:
- """
- Returns the key serialized as bytes.
- """
- @abc.abstractmethod
- def verify(
- self,
- signature: bytes,
- data: bytes,
- padding: AsymmetricPadding,
- algorithm: typing.Union[asym_utils.Prehashed, hashes.HashAlgorithm],
- ) -> None:
- """
- Verifies the signature of the data.
- """
- @abc.abstractmethod
- def recover_data_from_signature(
- self,
- signature: bytes,
- padding: AsymmetricPadding,
- algorithm: typing.Optional[hashes.HashAlgorithm],
- ) -> bytes:
- """
- Recovers the original data from the signature.
- """
- RSAPublicKeyWithSerialization = RSAPublicKey
- def generate_private_key(
- public_exponent: int,
- key_size: int,
- backend: typing.Any = None,
- ) -> RSAPrivateKey:
- from cryptography.hazmat.backends.openssl.backend import backend as ossl
- _verify_rsa_parameters(public_exponent, key_size)
- return ossl.generate_rsa_private_key(public_exponent, key_size)
- def _verify_rsa_parameters(public_exponent: int, key_size: int) -> None:
- if public_exponent not in (3, 65537):
- raise ValueError(
- "public_exponent must be either 3 (for legacy compatibility) or "
- "65537. Almost everyone should choose 65537 here!"
- )
- if key_size < 512:
- raise ValueError("key_size must be at least 512-bits.")
- def _check_private_key_components(
- p: int,
- q: int,
- private_exponent: int,
- dmp1: int,
- dmq1: int,
- iqmp: int,
- public_exponent: int,
- modulus: int,
- ) -> None:
- if modulus < 3:
- raise ValueError("modulus must be >= 3.")
- if p >= modulus:
- raise ValueError("p must be < modulus.")
- if q >= modulus:
- raise ValueError("q must be < modulus.")
- if dmp1 >= modulus:
- raise ValueError("dmp1 must be < modulus.")
- if dmq1 >= modulus:
- raise ValueError("dmq1 must be < modulus.")
- if iqmp >= modulus:
- raise ValueError("iqmp must be < modulus.")
- if private_exponent >= modulus:
- raise ValueError("private_exponent must be < modulus.")
- if public_exponent < 3 or public_exponent >= modulus:
- raise ValueError("public_exponent must be >= 3 and < modulus.")
- if public_exponent & 1 == 0:
- raise ValueError("public_exponent must be odd.")
- if dmp1 & 1 == 0:
- raise ValueError("dmp1 must be odd.")
- if dmq1 & 1 == 0:
- raise ValueError("dmq1 must be odd.")
- if p * q != modulus:
- raise ValueError("p*q must equal modulus.")
- def _check_public_key_components(e: int, n: int) -> None:
- if n < 3:
- raise ValueError("n must be >= 3.")
- if e < 3 or e >= n:
- raise ValueError("e must be >= 3 and < n.")
- if e & 1 == 0:
- raise ValueError("e must be odd.")
- def _modinv(e: int, m: int) -> int:
- """
- Modular Multiplicative Inverse. Returns x such that: (x*e) mod m == 1
- """
- x1, x2 = 1, 0
- a, b = e, m
- while b > 0:
- q, r = divmod(a, b)
- xn = x1 - q * x2
- a, b, x1, x2 = b, r, x2, xn
- return x1 % m
- def rsa_crt_iqmp(p: int, q: int) -> int:
- """
- Compute the CRT (q ** -1) % p value from RSA primes p and q.
- """
- return _modinv(q, p)
- def rsa_crt_dmp1(private_exponent: int, p: int) -> int:
- """
- Compute the CRT private_exponent % (p - 1) value from the RSA
- private_exponent (d) and p.
- """
- return private_exponent % (p - 1)
- def rsa_crt_dmq1(private_exponent: int, q: int) -> int:
- """
- Compute the CRT private_exponent % (q - 1) value from the RSA
- private_exponent (d) and q.
- """
- return private_exponent % (q - 1)
- # Controls the number of iterations rsa_recover_prime_factors will perform
- # to obtain the prime factors. Each iteration increments by 2 so the actual
- # maximum attempts is half this number.
- _MAX_RECOVERY_ATTEMPTS = 1000
- def rsa_recover_prime_factors(
- n: int, e: int, d: int
- ) -> typing.Tuple[int, int]:
- """
- Compute factors p and q from the private exponent d. We assume that n has
- no more than two factors. This function is adapted from code in PyCrypto.
- """
- # See 8.2.2(i) in Handbook of Applied Cryptography.
- ktot = d * e - 1
- # The quantity d*e-1 is a multiple of phi(n), even,
- # and can be represented as t*2^s.
- t = ktot
- while t % 2 == 0:
- t = t // 2
- # Cycle through all multiplicative inverses in Zn.
- # The algorithm is non-deterministic, but there is a 50% chance
- # any candidate a leads to successful factoring.
- # See "Digitalized Signatures and Public Key Functions as Intractable
- # as Factorization", M. Rabin, 1979
- spotted = False
- a = 2
- while not spotted and a < _MAX_RECOVERY_ATTEMPTS:
- k = t
- # Cycle through all values a^{t*2^i}=a^k
- while k < ktot:
- cand = pow(a, k, n)
- # Check if a^k is a non-trivial root of unity (mod n)
- if cand != 1 and cand != (n - 1) and pow(cand, 2, n) == 1:
- # We have found a number such that (cand-1)(cand+1)=0 (mod n).
- # Either of the terms divides n.
- p = gcd(cand + 1, n)
- spotted = True
- break
- k *= 2
- # This value was not any good... let's try another!
- a += 2
- if not spotted:
- raise ValueError("Unable to compute factors p and q from exponent d.")
- # Found !
- q, r = divmod(n, p)
- assert r == 0
- p, q = sorted((p, q), reverse=True)
- return (p, q)
- class RSAPrivateNumbers:
- def __init__(
- self,
- p: int,
- q: int,
- d: int,
- dmp1: int,
- dmq1: int,
- iqmp: int,
- public_numbers: "RSAPublicNumbers",
- ):
- if (
- not isinstance(p, int)
- or not isinstance(q, int)
- or not isinstance(d, int)
- or not isinstance(dmp1, int)
- or not isinstance(dmq1, int)
- or not isinstance(iqmp, int)
- ):
- raise TypeError(
- "RSAPrivateNumbers p, q, d, dmp1, dmq1, iqmp arguments must"
- " all be an integers."
- )
- if not isinstance(public_numbers, RSAPublicNumbers):
- raise TypeError(
- "RSAPrivateNumbers public_numbers must be an RSAPublicNumbers"
- " instance."
- )
- self._p = p
- self._q = q
- self._d = d
- self._dmp1 = dmp1
- self._dmq1 = dmq1
- self._iqmp = iqmp
- self._public_numbers = public_numbers
- @property
- def p(self) -> int:
- return self._p
- @property
- def q(self) -> int:
- return self._q
- @property
- def d(self) -> int:
- return self._d
- @property
- def dmp1(self) -> int:
- return self._dmp1
- @property
- def dmq1(self) -> int:
- return self._dmq1
- @property
- def iqmp(self) -> int:
- return self._iqmp
- @property
- def public_numbers(self) -> "RSAPublicNumbers":
- return self._public_numbers
- def private_key(self, backend: typing.Any = None) -> RSAPrivateKey:
- from cryptography.hazmat.backends.openssl.backend import (
- backend as ossl,
- )
- return ossl.load_rsa_private_numbers(self)
- def __eq__(self, other: object) -> bool:
- if not isinstance(other, RSAPrivateNumbers):
- return NotImplemented
- return (
- self.p == other.p
- and self.q == other.q
- and self.d == other.d
- and self.dmp1 == other.dmp1
- and self.dmq1 == other.dmq1
- and self.iqmp == other.iqmp
- and self.public_numbers == other.public_numbers
- )
- def __hash__(self) -> int:
- return hash(
- (
- self.p,
- self.q,
- self.d,
- self.dmp1,
- self.dmq1,
- self.iqmp,
- self.public_numbers,
- )
- )
- class RSAPublicNumbers:
- def __init__(self, e: int, n: int):
- if not isinstance(e, int) or not isinstance(n, int):
- raise TypeError("RSAPublicNumbers arguments must be integers.")
- self._e = e
- self._n = n
- @property
- def e(self) -> int:
- return self._e
- @property
- def n(self) -> int:
- return self._n
- def public_key(self, backend: typing.Any = None) -> RSAPublicKey:
- from cryptography.hazmat.backends.openssl.backend import (
- backend as ossl,
- )
- return ossl.load_rsa_public_numbers(self)
- def __repr__(self) -> str:
- return "<RSAPublicNumbers(e={0.e}, n={0.n})>".format(self)
- def __eq__(self, other: object) -> bool:
- if not isinstance(other, RSAPublicNumbers):
- return NotImplemented
- return self.e == other.e and self.n == other.n
- def __hash__(self) -> int:
- return hash((self.e, self.n))
|