123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305 |
- # Copyright 2013 Donald Stufft and individual contributors
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from typing import ClassVar, Optional
- import nacl.bindings
- from nacl import encoding
- from nacl import exceptions as exc
- from nacl.utils import EncryptedMessage, StringFixer, random
- class SecretBox(encoding.Encodable, StringFixer):
- """
- The SecretBox class encrypts and decrypts messages using the given secret
- key.
- The ciphertexts generated by :class:`~nacl.secret.Secretbox` include a 16
- byte authenticator which is checked as part of the decryption. An invalid
- authenticator will cause the decrypt function to raise an exception. The
- authenticator is not a signature. Once you've decrypted the message you've
- demonstrated the ability to create arbitrary valid message, so messages you
- send are repudiable. For non-repudiable messages, sign them after
- encryption.
- Encryption is done using `XSalsa20-Poly1305`_, and there are no practical
- limits on the number or size of messages (up to 2⁶⁴ messages, each up to 2⁶⁴
- bytes).
- .. _XSalsa20-Poly1305: https://doc.libsodium.org/secret-key_cryptography/secretbox#algorithm-details
- :param key: The secret key used to encrypt and decrypt messages
- :param encoder: The encoder class used to decode the given key
- :cvar KEY_SIZE: The size that the key is required to be.
- :cvar NONCE_SIZE: The size that the nonce is required to be.
- :cvar MACBYTES: The size of the authentication MAC tag in bytes.
- :cvar MESSAGEBYTES_MAX: The maximum size of a message which can be
- safely encrypted with a single key/nonce
- pair.
- """
- KEY_SIZE: ClassVar[int] = nacl.bindings.crypto_secretbox_KEYBYTES
- NONCE_SIZE: ClassVar[int] = nacl.bindings.crypto_secretbox_NONCEBYTES
- MACBYTES: ClassVar[int] = nacl.bindings.crypto_secretbox_MACBYTES
- MESSAGEBYTES_MAX: ClassVar[
- int
- ] = nacl.bindings.crypto_secretbox_MESSAGEBYTES_MAX
- def __init__(
- self, key: bytes, encoder: encoding.Encoder = encoding.RawEncoder
- ):
- key = encoder.decode(key)
- if not isinstance(key, bytes):
- raise exc.TypeError("SecretBox must be created from 32 bytes")
- if len(key) != self.KEY_SIZE:
- raise exc.ValueError(
- "The key must be exactly %s bytes long" % self.KEY_SIZE,
- )
- self._key = key
- def __bytes__(self) -> bytes:
- return self._key
- def encrypt(
- self,
- plaintext: bytes,
- nonce: Optional[bytes] = None,
- encoder: encoding.Encoder = encoding.RawEncoder,
- ) -> EncryptedMessage:
- """
- Encrypts the plaintext message using the given `nonce` (or generates
- one randomly if omitted) and returns the ciphertext encoded with the
- encoder.
- .. warning:: It is **VITALLY** important that the nonce is a nonce,
- i.e. it is a number used only once for any given key. If you fail
- to do this, you compromise the privacy of the messages encrypted.
- Give your nonces a different prefix, or have one side use an odd
- counter and one an even counter. Just make sure they are different.
- :param plaintext: [:class:`bytes`] The plaintext message to encrypt
- :param nonce: [:class:`bytes`] The nonce to use in the encryption
- :param encoder: The encoder to use to encode the ciphertext
- :rtype: [:class:`nacl.utils.EncryptedMessage`]
- """
- if nonce is None:
- nonce = random(self.NONCE_SIZE)
- if len(nonce) != self.NONCE_SIZE:
- raise exc.ValueError(
- "The nonce must be exactly %s bytes long" % self.NONCE_SIZE,
- )
- ciphertext = nacl.bindings.crypto_secretbox(
- plaintext, nonce, self._key
- )
- encoded_nonce = encoder.encode(nonce)
- encoded_ciphertext = encoder.encode(ciphertext)
- return EncryptedMessage._from_parts(
- encoded_nonce,
- encoded_ciphertext,
- encoder.encode(nonce + ciphertext),
- )
- def decrypt(
- self,
- ciphertext: bytes,
- nonce: Optional[bytes] = None,
- encoder: encoding.Encoder = encoding.RawEncoder,
- ) -> bytes:
- """
- Decrypts the ciphertext using the `nonce` (explicitly, when passed as a
- parameter or implicitly, when omitted, as part of the ciphertext) and
- returns the plaintext message.
- :param ciphertext: [:class:`bytes`] The encrypted message to decrypt
- :param nonce: [:class:`bytes`] The nonce used when encrypting the
- ciphertext
- :param encoder: The encoder used to decode the ciphertext.
- :rtype: [:class:`bytes`]
- """
- # Decode our ciphertext
- ciphertext = encoder.decode(ciphertext)
- if nonce is None:
- # If we were given the nonce and ciphertext combined, split them.
- nonce = ciphertext[: self.NONCE_SIZE]
- ciphertext = ciphertext[self.NONCE_SIZE :]
- if len(nonce) != self.NONCE_SIZE:
- raise exc.ValueError(
- "The nonce must be exactly %s bytes long" % self.NONCE_SIZE,
- )
- plaintext = nacl.bindings.crypto_secretbox_open(
- ciphertext, nonce, self._key
- )
- return plaintext
- class Aead(encoding.Encodable, StringFixer):
- """
- The AEAD class encrypts and decrypts messages using the given secret key.
- Unlike :class:`~nacl.secret.SecretBox`, AEAD supports authenticating
- non-confidential data received alongside the message, such as a length
- or type tag.
- Like :class:`~nacl.secret.Secretbox`, this class provides authenticated
- encryption. An inauthentic message will cause the decrypt function to raise
- an exception.
- Likewise, the authenticator should not be mistaken for a (public-key)
- signature: recipients (with the ability to decrypt messages) are capable of
- creating arbitrary valid message; in particular, this means AEAD messages
- are repudiable. For non-repudiable messages, sign them after encryption.
- The cryptosystem used is `XChacha20-Poly1305`_ as specified for
- `standardization`_. There are `no practical limits`_ to how much can safely
- be encrypted under a given key (up to 2⁶⁴ messages each containing up
- to 2⁶⁴ bytes).
- .. _standardization: https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-xchacha
- .. _XChacha20-Poly1305: https://doc.libsodium.org/secret-key_cryptography/aead#xchacha-20-poly1305
- .. _no practical limits: https://doc.libsodium.org/secret-key_cryptography/aead#limitations
- :param key: The secret key used to encrypt and decrypt messages
- :param encoder: The encoder class used to decode the given key
- :cvar KEY_SIZE: The size that the key is required to be.
- :cvar NONCE_SIZE: The size that the nonce is required to be.
- :cvar MACBYTES: The size of the authentication MAC tag in bytes.
- :cvar MESSAGEBYTES_MAX: The maximum size of a message which can be
- safely encrypted with a single key/nonce
- pair.
- """
- KEY_SIZE = nacl.bindings.crypto_aead_xchacha20poly1305_ietf_KEYBYTES
- NONCE_SIZE = nacl.bindings.crypto_aead_xchacha20poly1305_ietf_NPUBBYTES
- MACBYTES = nacl.bindings.crypto_aead_xchacha20poly1305_ietf_ABYTES
- MESSAGEBYTES_MAX = (
- nacl.bindings.crypto_aead_xchacha20poly1305_ietf_MESSAGEBYTES_MAX
- )
- def __init__(
- self,
- key: bytes,
- encoder: encoding.Encoder = encoding.RawEncoder,
- ):
- key = encoder.decode(key)
- if not isinstance(key, bytes):
- raise exc.TypeError("AEAD must be created from 32 bytes")
- if len(key) != self.KEY_SIZE:
- raise exc.ValueError(
- "The key must be exactly %s bytes long" % self.KEY_SIZE,
- )
- self._key = key
- def __bytes__(self) -> bytes:
- return self._key
- def encrypt(
- self,
- plaintext: bytes,
- aad: bytes = b"",
- nonce: Optional[bytes] = None,
- encoder: encoding.Encoder = encoding.RawEncoder,
- ) -> EncryptedMessage:
- """
- Encrypts the plaintext message using the given `nonce` (or generates
- one randomly if omitted) and returns the ciphertext encoded with the
- encoder.
- .. warning:: It is vitally important for :param nonce: to be unique.
- By default, it is generated randomly; [:class:`Aead`] uses XChacha20
- for extended (192b) nonce size, so the risk of reusing random nonces
- is negligible. It is *strongly recommended* to keep this behaviour,
- as nonce reuse will compromise the privacy of encrypted messages.
- Should implicit nonces be inadequate for your application, the
- second best option is using split counters; e.g. if sending messages
- encrypted under a shared key between 2 users, each user can use the
- number of messages it sent so far, prefixed or suffixed with a 1bit
- user id. Note that the counter must **never** be rolled back (due
- to overflow, on-disk state being rolled back to an earlier backup,
- ...)
- :param plaintext: [:class:`bytes`] The plaintext message to encrypt
- :param nonce: [:class:`bytes`] The nonce to use in the encryption
- :param encoder: The encoder to use to encode the ciphertext
- :rtype: [:class:`nacl.utils.EncryptedMessage`]
- """
- if nonce is None:
- nonce = random(self.NONCE_SIZE)
- if len(nonce) != self.NONCE_SIZE:
- raise exc.ValueError(
- "The nonce must be exactly %s bytes long" % self.NONCE_SIZE,
- )
- ciphertext = nacl.bindings.crypto_aead_xchacha20poly1305_ietf_encrypt(
- plaintext, aad, nonce, self._key
- )
- encoded_nonce = encoder.encode(nonce)
- encoded_ciphertext = encoder.encode(ciphertext)
- return EncryptedMessage._from_parts(
- encoded_nonce,
- encoded_ciphertext,
- encoder.encode(nonce + ciphertext),
- )
- def decrypt(
- self,
- ciphertext: bytes,
- aad: bytes = b"",
- nonce: Optional[bytes] = None,
- encoder: encoding.Encoder = encoding.RawEncoder,
- ) -> bytes:
- """
- Decrypts the ciphertext using the `nonce` (explicitly, when passed as a
- parameter or implicitly, when omitted, as part of the ciphertext) and
- returns the plaintext message.
- :param ciphertext: [:class:`bytes`] The encrypted message to decrypt
- :param nonce: [:class:`bytes`] The nonce used when encrypting the
- ciphertext
- :param encoder: The encoder used to decode the ciphertext.
- :rtype: [:class:`bytes`]
- """
- # Decode our ciphertext
- ciphertext = encoder.decode(ciphertext)
- if nonce is None:
- # If we were given the nonce and ciphertext combined, split them.
- nonce = ciphertext[: self.NONCE_SIZE]
- ciphertext = ciphertext[self.NONCE_SIZE :]
- if len(nonce) != self.NONCE_SIZE:
- raise exc.ValueError(
- "The nonce must be exactly %s bytes long" % self.NONCE_SIZE,
- )
- plaintext = nacl.bindings.crypto_aead_xchacha20poly1305_ietf_decrypt(
- ciphertext, aad, nonce, self._key
- )
- return plaintext
|