123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535 |
- # This file is dual licensed under the terms of the Apache License, Version
- # 2.0, and the BSD License. See the LICENSE file in the root of this repository
- # for complete details.
- import collections
- import contextlib
- import itertools
- import typing
- import warnings
- from contextlib import contextmanager
- from cryptography import utils, x509
- from cryptography.exceptions import UnsupportedAlgorithm, _Reasons
- from cryptography.hazmat.backends.openssl import aead
- from cryptography.hazmat.backends.openssl.ciphers import _CipherContext
- from cryptography.hazmat.backends.openssl.cmac import _CMACContext
- from cryptography.hazmat.backends.openssl.dh import (
- _DHParameters,
- _DHPrivateKey,
- _DHPublicKey,
- _dh_params_dup,
- )
- from cryptography.hazmat.backends.openssl.dsa import (
- _DSAParameters,
- _DSAPrivateKey,
- _DSAPublicKey,
- )
- from cryptography.hazmat.backends.openssl.ec import (
- _EllipticCurvePrivateKey,
- _EllipticCurvePublicKey,
- )
- from cryptography.hazmat.backends.openssl.ed25519 import (
- _Ed25519PrivateKey,
- _Ed25519PublicKey,
- )
- from cryptography.hazmat.backends.openssl.ed448 import (
- _ED448_KEY_SIZE,
- _Ed448PrivateKey,
- _Ed448PublicKey,
- )
- from cryptography.hazmat.backends.openssl.hashes import _HashContext
- from cryptography.hazmat.backends.openssl.hmac import _HMACContext
- from cryptography.hazmat.backends.openssl.poly1305 import (
- _POLY1305_KEY_SIZE,
- _Poly1305Context,
- )
- from cryptography.hazmat.backends.openssl.rsa import (
- _RSAPrivateKey,
- _RSAPublicKey,
- )
- from cryptography.hazmat.backends.openssl.x25519 import (
- _X25519PrivateKey,
- _X25519PublicKey,
- )
- from cryptography.hazmat.backends.openssl.x448 import (
- _X448PrivateKey,
- _X448PublicKey,
- )
- from cryptography.hazmat.bindings._rust import (
- x509 as rust_x509,
- )
- from cryptography.hazmat.bindings.openssl import binding
- from cryptography.hazmat.primitives import hashes, serialization
- from cryptography.hazmat.primitives._asymmetric import AsymmetricPadding
- from cryptography.hazmat.primitives.asymmetric import (
- dh,
- dsa,
- ec,
- ed25519,
- ed448,
- rsa,
- x25519,
- x448,
- )
- from cryptography.hazmat.primitives.asymmetric.padding import (
- MGF1,
- OAEP,
- PKCS1v15,
- PSS,
- )
- from cryptography.hazmat.primitives.asymmetric.types import (
- CERTIFICATE_ISSUER_PUBLIC_KEY_TYPES,
- PRIVATE_KEY_TYPES,
- PUBLIC_KEY_TYPES,
- )
- from cryptography.hazmat.primitives.ciphers import (
- BlockCipherAlgorithm,
- CipherAlgorithm,
- )
- from cryptography.hazmat.primitives.ciphers.algorithms import (
- AES,
- ARC4,
- Camellia,
- ChaCha20,
- SM4,
- TripleDES,
- _BlowfishInternal,
- _CAST5Internal,
- _IDEAInternal,
- _SEEDInternal,
- )
- from cryptography.hazmat.primitives.ciphers.modes import (
- CBC,
- CFB,
- CFB8,
- CTR,
- ECB,
- GCM,
- Mode,
- OFB,
- XTS,
- )
- from cryptography.hazmat.primitives.kdf import scrypt
- from cryptography.hazmat.primitives.serialization import pkcs7, ssh
- from cryptography.hazmat.primitives.serialization.pkcs12 import (
- PKCS12Certificate,
- PKCS12KeyAndCertificates,
- _ALLOWED_PKCS12_TYPES,
- _PKCS12_CAS_TYPES,
- )
- _MemoryBIO = collections.namedtuple("_MemoryBIO", ["bio", "char_ptr"])
- # Not actually supported, just used as a marker for some serialization tests.
- class _RC2:
- pass
- class Backend:
- """
- OpenSSL API binding interfaces.
- """
- name = "openssl"
- # FIPS has opinions about acceptable algorithms and key sizes, but the
- # disallowed algorithms are still present in OpenSSL. They just error if
- # you try to use them. To avoid that we allowlist the algorithms in
- # FIPS 140-3. This isn't ideal, but FIPS 140-3 is trash so here we are.
- _fips_aead = {
- b"aes-128-ccm",
- b"aes-192-ccm",
- b"aes-256-ccm",
- b"aes-128-gcm",
- b"aes-192-gcm",
- b"aes-256-gcm",
- }
- # TripleDES encryption is disallowed/deprecated throughout 2023 in
- # FIPS 140-3. To keep it simple we denylist any use of TripleDES (TDEA).
- _fips_ciphers = (AES,)
- # Sometimes SHA1 is still permissible. That logic is contained
- # within the various *_supported methods.
- _fips_hashes = (
- hashes.SHA224,
- hashes.SHA256,
- hashes.SHA384,
- hashes.SHA512,
- hashes.SHA512_224,
- hashes.SHA512_256,
- hashes.SHA3_224,
- hashes.SHA3_256,
- hashes.SHA3_384,
- hashes.SHA3_512,
- hashes.SHAKE128,
- hashes.SHAKE256,
- )
- _fips_ecdh_curves = (
- ec.SECP224R1,
- ec.SECP256R1,
- ec.SECP384R1,
- ec.SECP521R1,
- )
- _fips_rsa_min_key_size = 2048
- _fips_rsa_min_public_exponent = 65537
- _fips_dsa_min_modulus = 1 << 2048
- _fips_dh_min_key_size = 2048
- _fips_dh_min_modulus = 1 << _fips_dh_min_key_size
- def __init__(self):
- self._binding = binding.Binding()
- self._ffi = self._binding.ffi
- self._lib = self._binding.lib
- self._rsa_skip_check_key = False
- self._fips_enabled = self._is_fips_enabled()
- self._cipher_registry = {}
- self._register_default_ciphers()
- if self._fips_enabled and self._lib.CRYPTOGRAPHY_NEEDS_OSRANDOM_ENGINE:
- warnings.warn(
- "OpenSSL FIPS mode is enabled. Can't enable DRBG fork safety.",
- UserWarning,
- )
- else:
- self.activate_osrandom_engine()
- self._dh_types = [self._lib.EVP_PKEY_DH]
- if self._lib.Cryptography_HAS_EVP_PKEY_DHX:
- self._dh_types.append(self._lib.EVP_PKEY_DHX)
- def __repr__(self) -> str:
- return "<OpenSSLBackend(version: {}, FIPS: {})>".format(
- self.openssl_version_text(), self._fips_enabled
- )
- def openssl_assert(
- self,
- ok: bool,
- errors: typing.Optional[typing.List[binding._OpenSSLError]] = None,
- ) -> None:
- return binding._openssl_assert(self._lib, ok, errors=errors)
- def _is_fips_enabled(self) -> bool:
- if self._lib.Cryptography_HAS_300_FIPS:
- mode = self._lib.EVP_default_properties_is_fips_enabled(
- self._ffi.NULL
- )
- else:
- mode = getattr(self._lib, "FIPS_mode", lambda: 0)()
- if mode == 0:
- # OpenSSL without FIPS pushes an error on the error stack
- self._lib.ERR_clear_error()
- return bool(mode)
- def _enable_fips(self) -> None:
- # This function enables FIPS mode for OpenSSL 3.0.0 on installs that
- # have the FIPS provider installed properly.
- self._binding._enable_fips()
- assert self._is_fips_enabled()
- self._fips_enabled = self._is_fips_enabled()
- def activate_builtin_random(self) -> None:
- if self._lib.CRYPTOGRAPHY_NEEDS_OSRANDOM_ENGINE:
- # Obtain a new structural reference.
- e = self._lib.ENGINE_get_default_RAND()
- if e != self._ffi.NULL:
- self._lib.ENGINE_unregister_RAND(e)
- # Reset the RNG to use the built-in.
- res = self._lib.RAND_set_rand_method(self._ffi.NULL)
- self.openssl_assert(res == 1)
- # decrement the structural reference from get_default_RAND
- res = self._lib.ENGINE_finish(e)
- self.openssl_assert(res == 1)
- @contextlib.contextmanager
- def _get_osurandom_engine(self):
- # Fetches an engine by id and returns it. This creates a structural
- # reference.
- e = self._lib.ENGINE_by_id(self._lib.Cryptography_osrandom_engine_id)
- self.openssl_assert(e != self._ffi.NULL)
- # Initialize the engine for use. This adds a functional reference.
- res = self._lib.ENGINE_init(e)
- self.openssl_assert(res == 1)
- try:
- yield e
- finally:
- # Decrement the structural ref incremented by ENGINE_by_id.
- res = self._lib.ENGINE_free(e)
- self.openssl_assert(res == 1)
- # Decrement the functional ref incremented by ENGINE_init.
- res = self._lib.ENGINE_finish(e)
- self.openssl_assert(res == 1)
- def activate_osrandom_engine(self) -> None:
- if self._lib.CRYPTOGRAPHY_NEEDS_OSRANDOM_ENGINE:
- # Unregister and free the current engine.
- self.activate_builtin_random()
- with self._get_osurandom_engine() as e:
- # Set the engine as the default RAND provider.
- res = self._lib.ENGINE_set_default_RAND(e)
- self.openssl_assert(res == 1)
- # Reset the RNG to use the engine
- res = self._lib.RAND_set_rand_method(self._ffi.NULL)
- self.openssl_assert(res == 1)
- def osrandom_engine_implementation(self) -> str:
- buf = self._ffi.new("char[]", 64)
- with self._get_osurandom_engine() as e:
- res = self._lib.ENGINE_ctrl_cmd(
- e, b"get_implementation", len(buf), buf, self._ffi.NULL, 0
- )
- self.openssl_assert(res > 0)
- return self._ffi.string(buf).decode("ascii")
- def openssl_version_text(self) -> str:
- """
- Friendly string name of the loaded OpenSSL library. This is not
- necessarily the same version as it was compiled against.
- Example: OpenSSL 1.1.1d 10 Sep 2019
- """
- return self._ffi.string(
- self._lib.OpenSSL_version(self._lib.OPENSSL_VERSION)
- ).decode("ascii")
- def openssl_version_number(self) -> int:
- return self._lib.OpenSSL_version_num()
- def create_hmac_ctx(
- self, key: bytes, algorithm: hashes.HashAlgorithm
- ) -> _HMACContext:
- return _HMACContext(self, key, algorithm)
- def _evp_md_from_algorithm(self, algorithm: hashes.HashAlgorithm):
- if algorithm.name == "blake2b" or algorithm.name == "blake2s":
- alg = "{}{}".format(
- algorithm.name, algorithm.digest_size * 8
- ).encode("ascii")
- else:
- alg = algorithm.name.encode("ascii")
- evp_md = self._lib.EVP_get_digestbyname(alg)
- return evp_md
- def _evp_md_non_null_from_algorithm(self, algorithm: hashes.HashAlgorithm):
- evp_md = self._evp_md_from_algorithm(algorithm)
- self.openssl_assert(evp_md != self._ffi.NULL)
- return evp_md
- def hash_supported(self, algorithm: hashes.HashAlgorithm) -> bool:
- if self._fips_enabled and not isinstance(algorithm, self._fips_hashes):
- return False
- evp_md = self._evp_md_from_algorithm(algorithm)
- return evp_md != self._ffi.NULL
- def signature_hash_supported(
- self, algorithm: hashes.HashAlgorithm
- ) -> bool:
- # Dedicated check for hashing algorithm use in message digest for
- # signatures, e.g. RSA PKCS#1 v1.5 SHA1 (sha1WithRSAEncryption).
- if self._fips_enabled and isinstance(algorithm, hashes.SHA1):
- return False
- return self.hash_supported(algorithm)
- def scrypt_supported(self) -> bool:
- if self._fips_enabled:
- return False
- else:
- return self._lib.Cryptography_HAS_SCRYPT == 1
- def hmac_supported(self, algorithm: hashes.HashAlgorithm) -> bool:
- # FIPS mode still allows SHA1 for HMAC
- if self._fips_enabled and isinstance(algorithm, hashes.SHA1):
- return True
- return self.hash_supported(algorithm)
- def create_hash_ctx(
- self, algorithm: hashes.HashAlgorithm
- ) -> hashes.HashContext:
- return _HashContext(self, algorithm)
- def cipher_supported(self, cipher: CipherAlgorithm, mode: Mode) -> bool:
- if self._fips_enabled:
- # FIPS mode requires AES. TripleDES is disallowed/deprecated in
- # FIPS 140-3.
- if not isinstance(cipher, self._fips_ciphers):
- return False
- try:
- adapter = self._cipher_registry[type(cipher), type(mode)]
- except KeyError:
- return False
- evp_cipher = adapter(self, cipher, mode)
- return self._ffi.NULL != evp_cipher
- def register_cipher_adapter(self, cipher_cls, mode_cls, adapter):
- if (cipher_cls, mode_cls) in self._cipher_registry:
- raise ValueError(
- "Duplicate registration for: {} {}.".format(
- cipher_cls, mode_cls
- )
- )
- self._cipher_registry[cipher_cls, mode_cls] = adapter
- def _register_default_ciphers(self) -> None:
- for mode_cls in [CBC, CTR, ECB, OFB, CFB, CFB8, GCM]:
- self.register_cipher_adapter(
- AES,
- mode_cls,
- GetCipherByName("{cipher.name}-{cipher.key_size}-{mode.name}"),
- )
- for mode_cls in [CBC, CTR, ECB, OFB, CFB]:
- self.register_cipher_adapter(
- Camellia,
- mode_cls,
- GetCipherByName("{cipher.name}-{cipher.key_size}-{mode.name}"),
- )
- for mode_cls in [CBC, CFB, CFB8, OFB]:
- self.register_cipher_adapter(
- TripleDES, mode_cls, GetCipherByName("des-ede3-{mode.name}")
- )
- self.register_cipher_adapter(
- TripleDES, ECB, GetCipherByName("des-ede3")
- )
- for mode_cls in [CBC, CFB, OFB, ECB]:
- self.register_cipher_adapter(
- _BlowfishInternal, mode_cls, GetCipherByName("bf-{mode.name}")
- )
- for mode_cls in [CBC, CFB, OFB, ECB]:
- self.register_cipher_adapter(
- _SEEDInternal, mode_cls, GetCipherByName("seed-{mode.name}")
- )
- for cipher_cls, mode_cls in itertools.product(
- [_CAST5Internal, _IDEAInternal],
- [CBC, OFB, CFB, ECB],
- ):
- self.register_cipher_adapter(
- cipher_cls,
- mode_cls,
- GetCipherByName("{cipher.name}-{mode.name}"),
- )
- self.register_cipher_adapter(ARC4, type(None), GetCipherByName("rc4"))
- # We don't actually support RC2, this is just used by some tests.
- self.register_cipher_adapter(_RC2, type(None), GetCipherByName("rc2"))
- self.register_cipher_adapter(
- ChaCha20, type(None), GetCipherByName("chacha20")
- )
- self.register_cipher_adapter(AES, XTS, _get_xts_cipher)
- for mode_cls in [ECB, CBC, OFB, CFB, CTR]:
- self.register_cipher_adapter(
- SM4, mode_cls, GetCipherByName("sm4-{mode.name}")
- )
- def create_symmetric_encryption_ctx(
- self, cipher: CipherAlgorithm, mode: Mode
- ) -> _CipherContext:
- return _CipherContext(self, cipher, mode, _CipherContext._ENCRYPT)
- def create_symmetric_decryption_ctx(
- self, cipher: CipherAlgorithm, mode: Mode
- ) -> _CipherContext:
- return _CipherContext(self, cipher, mode, _CipherContext._DECRYPT)
- def pbkdf2_hmac_supported(self, algorithm: hashes.HashAlgorithm) -> bool:
- return self.hmac_supported(algorithm)
- def derive_pbkdf2_hmac(
- self,
- algorithm: hashes.HashAlgorithm,
- length: int,
- salt: bytes,
- iterations: int,
- key_material: bytes,
- ) -> bytes:
- buf = self._ffi.new("unsigned char[]", length)
- evp_md = self._evp_md_non_null_from_algorithm(algorithm)
- key_material_ptr = self._ffi.from_buffer(key_material)
- res = self._lib.PKCS5_PBKDF2_HMAC(
- key_material_ptr,
- len(key_material),
- salt,
- len(salt),
- iterations,
- evp_md,
- length,
- buf,
- )
- self.openssl_assert(res == 1)
- return self._ffi.buffer(buf)[:]
- def _consume_errors(self) -> typing.List[binding._OpenSSLError]:
- return binding._consume_errors(self._lib)
- def _consume_errors_with_text(
- self,
- ) -> typing.List[binding._OpenSSLErrorWithText]:
- return binding._consume_errors_with_text(self._lib)
- def _bn_to_int(self, bn) -> int:
- assert bn != self._ffi.NULL
- self.openssl_assert(not self._lib.BN_is_negative(bn))
- bn_num_bytes = self._lib.BN_num_bytes(bn)
- bin_ptr = self._ffi.new("unsigned char[]", bn_num_bytes)
- bin_len = self._lib.BN_bn2bin(bn, bin_ptr)
- # A zero length means the BN has value 0
- self.openssl_assert(bin_len >= 0)
- val = int.from_bytes(self._ffi.buffer(bin_ptr)[:bin_len], "big")
- return val
- def _int_to_bn(self, num: int, bn=None):
- """
- Converts a python integer to a BIGNUM. The returned BIGNUM will not
- be garbage collected (to support adding them to structs that take
- ownership of the object). Be sure to register it for GC if it will
- be discarded after use.
- """
- assert bn is None or bn != self._ffi.NULL
- if bn is None:
- bn = self._ffi.NULL
- binary = num.to_bytes(int(num.bit_length() / 8.0 + 1), "big")
- bn_ptr = self._lib.BN_bin2bn(binary, len(binary), bn)
- self.openssl_assert(bn_ptr != self._ffi.NULL)
- return bn_ptr
- def generate_rsa_private_key(
- self, public_exponent: int, key_size: int
- ) -> rsa.RSAPrivateKey:
- rsa._verify_rsa_parameters(public_exponent, key_size)
- rsa_cdata = self._lib.RSA_new()
- self.openssl_assert(rsa_cdata != self._ffi.NULL)
- rsa_cdata = self._ffi.gc(rsa_cdata, self._lib.RSA_free)
- bn = self._int_to_bn(public_exponent)
- bn = self._ffi.gc(bn, self._lib.BN_free)
- res = self._lib.RSA_generate_key_ex(
- rsa_cdata, key_size, bn, self._ffi.NULL
- )
- self.openssl_assert(res == 1)
- evp_pkey = self._rsa_cdata_to_evp_pkey(rsa_cdata)
- return _RSAPrivateKey(
- self, rsa_cdata, evp_pkey, self._rsa_skip_check_key
- )
- def generate_rsa_parameters_supported(
- self, public_exponent: int, key_size: int
- ) -> bool:
- return (
- public_exponent >= 3
- and public_exponent & 1 != 0
- and key_size >= 512
- )
- def load_rsa_private_numbers(
- self, numbers: rsa.RSAPrivateNumbers
- ) -> rsa.RSAPrivateKey:
- rsa._check_private_key_components(
- numbers.p,
- numbers.q,
- numbers.d,
- numbers.dmp1,
- numbers.dmq1,
- numbers.iqmp,
- numbers.public_numbers.e,
- numbers.public_numbers.n,
- )
- rsa_cdata = self._lib.RSA_new()
- self.openssl_assert(rsa_cdata != self._ffi.NULL)
- rsa_cdata = self._ffi.gc(rsa_cdata, self._lib.RSA_free)
- p = self._int_to_bn(numbers.p)
- q = self._int_to_bn(numbers.q)
- d = self._int_to_bn(numbers.d)
- dmp1 = self._int_to_bn(numbers.dmp1)
- dmq1 = self._int_to_bn(numbers.dmq1)
- iqmp = self._int_to_bn(numbers.iqmp)
- e = self._int_to_bn(numbers.public_numbers.e)
- n = self._int_to_bn(numbers.public_numbers.n)
- res = self._lib.RSA_set0_factors(rsa_cdata, p, q)
- self.openssl_assert(res == 1)
- res = self._lib.RSA_set0_key(rsa_cdata, n, e, d)
- self.openssl_assert(res == 1)
- res = self._lib.RSA_set0_crt_params(rsa_cdata, dmp1, dmq1, iqmp)
- self.openssl_assert(res == 1)
- evp_pkey = self._rsa_cdata_to_evp_pkey(rsa_cdata)
- return _RSAPrivateKey(
- self, rsa_cdata, evp_pkey, self._rsa_skip_check_key
- )
- def load_rsa_public_numbers(
- self, numbers: rsa.RSAPublicNumbers
- ) -> rsa.RSAPublicKey:
- rsa._check_public_key_components(numbers.e, numbers.n)
- rsa_cdata = self._lib.RSA_new()
- self.openssl_assert(rsa_cdata != self._ffi.NULL)
- rsa_cdata = self._ffi.gc(rsa_cdata, self._lib.RSA_free)
- e = self._int_to_bn(numbers.e)
- n = self._int_to_bn(numbers.n)
- res = self._lib.RSA_set0_key(rsa_cdata, n, e, self._ffi.NULL)
- self.openssl_assert(res == 1)
- evp_pkey = self._rsa_cdata_to_evp_pkey(rsa_cdata)
- return _RSAPublicKey(self, rsa_cdata, evp_pkey)
- def _create_evp_pkey_gc(self):
- evp_pkey = self._lib.EVP_PKEY_new()
- self.openssl_assert(evp_pkey != self._ffi.NULL)
- evp_pkey = self._ffi.gc(evp_pkey, self._lib.EVP_PKEY_free)
- return evp_pkey
- def _rsa_cdata_to_evp_pkey(self, rsa_cdata):
- evp_pkey = self._create_evp_pkey_gc()
- res = self._lib.EVP_PKEY_set1_RSA(evp_pkey, rsa_cdata)
- self.openssl_assert(res == 1)
- return evp_pkey
- def _bytes_to_bio(self, data: bytes):
- """
- Return a _MemoryBIO namedtuple of (BIO, char*).
- The char* is the storage for the BIO and it must stay alive until the
- BIO is finished with.
- """
- data_ptr = self._ffi.from_buffer(data)
- bio = self._lib.BIO_new_mem_buf(data_ptr, len(data))
- self.openssl_assert(bio != self._ffi.NULL)
- return _MemoryBIO(self._ffi.gc(bio, self._lib.BIO_free), data_ptr)
- def _create_mem_bio_gc(self):
- """
- Creates an empty memory BIO.
- """
- bio_method = self._lib.BIO_s_mem()
- self.openssl_assert(bio_method != self._ffi.NULL)
- bio = self._lib.BIO_new(bio_method)
- self.openssl_assert(bio != self._ffi.NULL)
- bio = self._ffi.gc(bio, self._lib.BIO_free)
- return bio
- def _read_mem_bio(self, bio) -> bytes:
- """
- Reads a memory BIO. This only works on memory BIOs.
- """
- buf = self._ffi.new("char **")
- buf_len = self._lib.BIO_get_mem_data(bio, buf)
- self.openssl_assert(buf_len > 0)
- self.openssl_assert(buf[0] != self._ffi.NULL)
- bio_data = self._ffi.buffer(buf[0], buf_len)[:]
- return bio_data
- def _evp_pkey_to_private_key(self, evp_pkey) -> PRIVATE_KEY_TYPES:
- """
- Return the appropriate type of PrivateKey given an evp_pkey cdata
- pointer.
- """
- key_type = self._lib.EVP_PKEY_id(evp_pkey)
- if key_type == self._lib.EVP_PKEY_RSA:
- rsa_cdata = self._lib.EVP_PKEY_get1_RSA(evp_pkey)
- self.openssl_assert(rsa_cdata != self._ffi.NULL)
- rsa_cdata = self._ffi.gc(rsa_cdata, self._lib.RSA_free)
- return _RSAPrivateKey(
- self, rsa_cdata, evp_pkey, self._rsa_skip_check_key
- )
- elif (
- key_type == self._lib.EVP_PKEY_RSA_PSS
- and not self._lib.CRYPTOGRAPHY_IS_LIBRESSL
- and not self._lib.CRYPTOGRAPHY_IS_BORINGSSL
- and not self._lib.CRYPTOGRAPHY_OPENSSL_LESS_THAN_111E
- ):
- # At the moment the way we handle RSA PSS keys is to strip the
- # PSS constraints from them and treat them as normal RSA keys
- # Unfortunately the RSA * itself tracks this data so we need to
- # extract, serialize, and reload it without the constraints.
- rsa_cdata = self._lib.EVP_PKEY_get1_RSA(evp_pkey)
- self.openssl_assert(rsa_cdata != self._ffi.NULL)
- rsa_cdata = self._ffi.gc(rsa_cdata, self._lib.RSA_free)
- bio = self._create_mem_bio_gc()
- res = self._lib.i2d_RSAPrivateKey_bio(bio, rsa_cdata)
- self.openssl_assert(res == 1)
- return self.load_der_private_key(
- self._read_mem_bio(bio), password=None
- )
- elif key_type == self._lib.EVP_PKEY_DSA:
- dsa_cdata = self._lib.EVP_PKEY_get1_DSA(evp_pkey)
- self.openssl_assert(dsa_cdata != self._ffi.NULL)
- dsa_cdata = self._ffi.gc(dsa_cdata, self._lib.DSA_free)
- return _DSAPrivateKey(self, dsa_cdata, evp_pkey)
- elif key_type == self._lib.EVP_PKEY_EC:
- ec_cdata = self._lib.EVP_PKEY_get1_EC_KEY(evp_pkey)
- self.openssl_assert(ec_cdata != self._ffi.NULL)
- ec_cdata = self._ffi.gc(ec_cdata, self._lib.EC_KEY_free)
- return _EllipticCurvePrivateKey(self, ec_cdata, evp_pkey)
- elif key_type in self._dh_types:
- dh_cdata = self._lib.EVP_PKEY_get1_DH(evp_pkey)
- self.openssl_assert(dh_cdata != self._ffi.NULL)
- dh_cdata = self._ffi.gc(dh_cdata, self._lib.DH_free)
- return _DHPrivateKey(self, dh_cdata, evp_pkey)
- elif key_type == getattr(self._lib, "EVP_PKEY_ED25519", None):
- # EVP_PKEY_ED25519 is not present in OpenSSL < 1.1.1
- return _Ed25519PrivateKey(self, evp_pkey)
- elif key_type == getattr(self._lib, "EVP_PKEY_X448", None):
- # EVP_PKEY_X448 is not present in OpenSSL < 1.1.1
- return _X448PrivateKey(self, evp_pkey)
- elif key_type == getattr(self._lib, "EVP_PKEY_X25519", None):
- # EVP_PKEY_X25519 is not present in OpenSSL < 1.1.0
- return _X25519PrivateKey(self, evp_pkey)
- elif key_type == getattr(self._lib, "EVP_PKEY_ED448", None):
- # EVP_PKEY_ED448 is not present in OpenSSL < 1.1.1
- return _Ed448PrivateKey(self, evp_pkey)
- else:
- raise UnsupportedAlgorithm("Unsupported key type.")
- def _evp_pkey_to_public_key(self, evp_pkey) -> PUBLIC_KEY_TYPES:
- """
- Return the appropriate type of PublicKey given an evp_pkey cdata
- pointer.
- """
- key_type = self._lib.EVP_PKEY_id(evp_pkey)
- if key_type == self._lib.EVP_PKEY_RSA:
- rsa_cdata = self._lib.EVP_PKEY_get1_RSA(evp_pkey)
- self.openssl_assert(rsa_cdata != self._ffi.NULL)
- rsa_cdata = self._ffi.gc(rsa_cdata, self._lib.RSA_free)
- return _RSAPublicKey(self, rsa_cdata, evp_pkey)
- elif key_type == self._lib.EVP_PKEY_DSA:
- dsa_cdata = self._lib.EVP_PKEY_get1_DSA(evp_pkey)
- self.openssl_assert(dsa_cdata != self._ffi.NULL)
- dsa_cdata = self._ffi.gc(dsa_cdata, self._lib.DSA_free)
- return _DSAPublicKey(self, dsa_cdata, evp_pkey)
- elif key_type == self._lib.EVP_PKEY_EC:
- ec_cdata = self._lib.EVP_PKEY_get1_EC_KEY(evp_pkey)
- self.openssl_assert(ec_cdata != self._ffi.NULL)
- ec_cdata = self._ffi.gc(ec_cdata, self._lib.EC_KEY_free)
- return _EllipticCurvePublicKey(self, ec_cdata, evp_pkey)
- elif key_type in self._dh_types:
- dh_cdata = self._lib.EVP_PKEY_get1_DH(evp_pkey)
- self.openssl_assert(dh_cdata != self._ffi.NULL)
- dh_cdata = self._ffi.gc(dh_cdata, self._lib.DH_free)
- return _DHPublicKey(self, dh_cdata, evp_pkey)
- elif key_type == getattr(self._lib, "EVP_PKEY_ED25519", None):
- # EVP_PKEY_ED25519 is not present in OpenSSL < 1.1.1
- return _Ed25519PublicKey(self, evp_pkey)
- elif key_type == getattr(self._lib, "EVP_PKEY_X448", None):
- # EVP_PKEY_X448 is not present in OpenSSL < 1.1.1
- return _X448PublicKey(self, evp_pkey)
- elif key_type == getattr(self._lib, "EVP_PKEY_X25519", None):
- # EVP_PKEY_X25519 is not present in OpenSSL < 1.1.0
- return _X25519PublicKey(self, evp_pkey)
- elif key_type == getattr(self._lib, "EVP_PKEY_ED448", None):
- # EVP_PKEY_X25519 is not present in OpenSSL < 1.1.1
- return _Ed448PublicKey(self, evp_pkey)
- else:
- raise UnsupportedAlgorithm("Unsupported key type.")
- def _oaep_hash_supported(self, algorithm: hashes.HashAlgorithm) -> bool:
- return isinstance(
- algorithm,
- (
- hashes.SHA1,
- hashes.SHA224,
- hashes.SHA256,
- hashes.SHA384,
- hashes.SHA512,
- ),
- )
- def rsa_padding_supported(self, padding: AsymmetricPadding) -> bool:
- if isinstance(padding, PKCS1v15):
- return True
- elif isinstance(padding, PSS) and isinstance(padding._mgf, MGF1):
- # SHA1 is permissible in MGF1 in FIPS even when SHA1 is blocked
- # as signature algorithm.
- if self._fips_enabled and isinstance(
- padding._mgf._algorithm, hashes.SHA1
- ):
- return True
- else:
- return self.hash_supported(padding._mgf._algorithm)
- elif isinstance(padding, OAEP) and isinstance(padding._mgf, MGF1):
- return self._oaep_hash_supported(
- padding._mgf._algorithm
- ) and self._oaep_hash_supported(padding._algorithm)
- else:
- return False
- def generate_dsa_parameters(self, key_size: int) -> dsa.DSAParameters:
- if key_size not in (1024, 2048, 3072, 4096):
- raise ValueError(
- "Key size must be 1024, 2048, 3072, or 4096 bits."
- )
- ctx = self._lib.DSA_new()
- self.openssl_assert(ctx != self._ffi.NULL)
- ctx = self._ffi.gc(ctx, self._lib.DSA_free)
- res = self._lib.DSA_generate_parameters_ex(
- ctx,
- key_size,
- self._ffi.NULL,
- 0,
- self._ffi.NULL,
- self._ffi.NULL,
- self._ffi.NULL,
- )
- self.openssl_assert(res == 1)
- return _DSAParameters(self, ctx)
- def generate_dsa_private_key(
- self, parameters: dsa.DSAParameters
- ) -> dsa.DSAPrivateKey:
- ctx = self._lib.DSAparams_dup(
- parameters._dsa_cdata # type: ignore[attr-defined]
- )
- self.openssl_assert(ctx != self._ffi.NULL)
- ctx = self._ffi.gc(ctx, self._lib.DSA_free)
- self._lib.DSA_generate_key(ctx)
- evp_pkey = self._dsa_cdata_to_evp_pkey(ctx)
- return _DSAPrivateKey(self, ctx, evp_pkey)
- def generate_dsa_private_key_and_parameters(
- self, key_size: int
- ) -> dsa.DSAPrivateKey:
- parameters = self.generate_dsa_parameters(key_size)
- return self.generate_dsa_private_key(parameters)
- def _dsa_cdata_set_values(self, dsa_cdata, p, q, g, pub_key, priv_key):
- res = self._lib.DSA_set0_pqg(dsa_cdata, p, q, g)
- self.openssl_assert(res == 1)
- res = self._lib.DSA_set0_key(dsa_cdata, pub_key, priv_key)
- self.openssl_assert(res == 1)
- def load_dsa_private_numbers(
- self, numbers: dsa.DSAPrivateNumbers
- ) -> dsa.DSAPrivateKey:
- dsa._check_dsa_private_numbers(numbers)
- parameter_numbers = numbers.public_numbers.parameter_numbers
- dsa_cdata = self._lib.DSA_new()
- self.openssl_assert(dsa_cdata != self._ffi.NULL)
- dsa_cdata = self._ffi.gc(dsa_cdata, self._lib.DSA_free)
- p = self._int_to_bn(parameter_numbers.p)
- q = self._int_to_bn(parameter_numbers.q)
- g = self._int_to_bn(parameter_numbers.g)
- pub_key = self._int_to_bn(numbers.public_numbers.y)
- priv_key = self._int_to_bn(numbers.x)
- self._dsa_cdata_set_values(dsa_cdata, p, q, g, pub_key, priv_key)
- evp_pkey = self._dsa_cdata_to_evp_pkey(dsa_cdata)
- return _DSAPrivateKey(self, dsa_cdata, evp_pkey)
- def load_dsa_public_numbers(
- self, numbers: dsa.DSAPublicNumbers
- ) -> dsa.DSAPublicKey:
- dsa._check_dsa_parameters(numbers.parameter_numbers)
- dsa_cdata = self._lib.DSA_new()
- self.openssl_assert(dsa_cdata != self._ffi.NULL)
- dsa_cdata = self._ffi.gc(dsa_cdata, self._lib.DSA_free)
- p = self._int_to_bn(numbers.parameter_numbers.p)
- q = self._int_to_bn(numbers.parameter_numbers.q)
- g = self._int_to_bn(numbers.parameter_numbers.g)
- pub_key = self._int_to_bn(numbers.y)
- priv_key = self._ffi.NULL
- self._dsa_cdata_set_values(dsa_cdata, p, q, g, pub_key, priv_key)
- evp_pkey = self._dsa_cdata_to_evp_pkey(dsa_cdata)
- return _DSAPublicKey(self, dsa_cdata, evp_pkey)
- def load_dsa_parameter_numbers(
- self, numbers: dsa.DSAParameterNumbers
- ) -> dsa.DSAParameters:
- dsa._check_dsa_parameters(numbers)
- dsa_cdata = self._lib.DSA_new()
- self.openssl_assert(dsa_cdata != self._ffi.NULL)
- dsa_cdata = self._ffi.gc(dsa_cdata, self._lib.DSA_free)
- p = self._int_to_bn(numbers.p)
- q = self._int_to_bn(numbers.q)
- g = self._int_to_bn(numbers.g)
- res = self._lib.DSA_set0_pqg(dsa_cdata, p, q, g)
- self.openssl_assert(res == 1)
- return _DSAParameters(self, dsa_cdata)
- def _dsa_cdata_to_evp_pkey(self, dsa_cdata):
- evp_pkey = self._create_evp_pkey_gc()
- res = self._lib.EVP_PKEY_set1_DSA(evp_pkey, dsa_cdata)
- self.openssl_assert(res == 1)
- return evp_pkey
- def dsa_supported(self) -> bool:
- return not self._fips_enabled
- def dsa_hash_supported(self, algorithm: hashes.HashAlgorithm) -> bool:
- if not self.dsa_supported():
- return False
- return self.signature_hash_supported(algorithm)
- def cmac_algorithm_supported(self, algorithm) -> bool:
- return self.cipher_supported(
- algorithm, CBC(b"\x00" * algorithm.block_size)
- )
- def create_cmac_ctx(self, algorithm: BlockCipherAlgorithm) -> _CMACContext:
- return _CMACContext(self, algorithm)
- def load_pem_private_key(
- self, data: bytes, password: typing.Optional[bytes]
- ) -> PRIVATE_KEY_TYPES:
- return self._load_key(
- self._lib.PEM_read_bio_PrivateKey,
- self._evp_pkey_to_private_key,
- data,
- password,
- )
- def load_pem_public_key(self, data: bytes) -> PUBLIC_KEY_TYPES:
- mem_bio = self._bytes_to_bio(data)
- # In OpenSSL 3.0.x the PEM_read_bio_PUBKEY function will invoke
- # the default password callback if you pass an encrypted private
- # key. This is very, very, very bad as the default callback can
- # trigger an interactive console prompt, which will hang the
- # Python process. We therefore provide our own callback to
- # catch this and error out properly.
- userdata = self._ffi.new("CRYPTOGRAPHY_PASSWORD_DATA *")
- evp_pkey = self._lib.PEM_read_bio_PUBKEY(
- mem_bio.bio,
- self._ffi.NULL,
- self._ffi.addressof(
- self._lib._original_lib, "Cryptography_pem_password_cb"
- ),
- userdata,
- )
- if evp_pkey != self._ffi.NULL:
- evp_pkey = self._ffi.gc(evp_pkey, self._lib.EVP_PKEY_free)
- return self._evp_pkey_to_public_key(evp_pkey)
- else:
- # It's not a (RSA/DSA/ECDSA) subjectPublicKeyInfo, but we still
- # need to check to see if it is a pure PKCS1 RSA public key (not
- # embedded in a subjectPublicKeyInfo)
- self._consume_errors()
- res = self._lib.BIO_reset(mem_bio.bio)
- self.openssl_assert(res == 1)
- rsa_cdata = self._lib.PEM_read_bio_RSAPublicKey(
- mem_bio.bio,
- self._ffi.NULL,
- self._ffi.addressof(
- self._lib._original_lib, "Cryptography_pem_password_cb"
- ),
- userdata,
- )
- if rsa_cdata != self._ffi.NULL:
- rsa_cdata = self._ffi.gc(rsa_cdata, self._lib.RSA_free)
- evp_pkey = self._rsa_cdata_to_evp_pkey(rsa_cdata)
- return _RSAPublicKey(self, rsa_cdata, evp_pkey)
- else:
- self._handle_key_loading_error()
- def load_pem_parameters(self, data: bytes) -> dh.DHParameters:
- mem_bio = self._bytes_to_bio(data)
- # only DH is supported currently
- dh_cdata = self._lib.PEM_read_bio_DHparams(
- mem_bio.bio, self._ffi.NULL, self._ffi.NULL, self._ffi.NULL
- )
- if dh_cdata != self._ffi.NULL:
- dh_cdata = self._ffi.gc(dh_cdata, self._lib.DH_free)
- return _DHParameters(self, dh_cdata)
- else:
- self._handle_key_loading_error()
- def load_der_private_key(
- self, data: bytes, password: typing.Optional[bytes]
- ) -> PRIVATE_KEY_TYPES:
- # OpenSSL has a function called d2i_AutoPrivateKey that in theory
- # handles this automatically, however it doesn't handle encrypted
- # private keys. Instead we try to load the key two different ways.
- # First we'll try to load it as a traditional key.
- bio_data = self._bytes_to_bio(data)
- key = self._evp_pkey_from_der_traditional_key(bio_data, password)
- if key:
- return self._evp_pkey_to_private_key(key)
- else:
- # Finally we try to load it with the method that handles encrypted
- # PKCS8 properly.
- return self._load_key(
- self._lib.d2i_PKCS8PrivateKey_bio,
- self._evp_pkey_to_private_key,
- data,
- password,
- )
- def _evp_pkey_from_der_traditional_key(self, bio_data, password):
- key = self._lib.d2i_PrivateKey_bio(bio_data.bio, self._ffi.NULL)
- if key != self._ffi.NULL:
- # In OpenSSL 3.0.0-alpha15 there exist scenarios where the key will
- # successfully load but errors are still put on the stack. Tracked
- # as https://github.com/openssl/openssl/issues/14996
- self._consume_errors()
- key = self._ffi.gc(key, self._lib.EVP_PKEY_free)
- if password is not None:
- raise TypeError(
- "Password was given but private key is not encrypted."
- )
- return key
- else:
- self._consume_errors()
- return None
- def load_der_public_key(self, data: bytes) -> PUBLIC_KEY_TYPES:
- mem_bio = self._bytes_to_bio(data)
- evp_pkey = self._lib.d2i_PUBKEY_bio(mem_bio.bio, self._ffi.NULL)
- if evp_pkey != self._ffi.NULL:
- evp_pkey = self._ffi.gc(evp_pkey, self._lib.EVP_PKEY_free)
- return self._evp_pkey_to_public_key(evp_pkey)
- else:
- # It's not a (RSA/DSA/ECDSA) subjectPublicKeyInfo, but we still
- # need to check to see if it is a pure PKCS1 RSA public key (not
- # embedded in a subjectPublicKeyInfo)
- self._consume_errors()
- res = self._lib.BIO_reset(mem_bio.bio)
- self.openssl_assert(res == 1)
- rsa_cdata = self._lib.d2i_RSAPublicKey_bio(
- mem_bio.bio, self._ffi.NULL
- )
- if rsa_cdata != self._ffi.NULL:
- rsa_cdata = self._ffi.gc(rsa_cdata, self._lib.RSA_free)
- evp_pkey = self._rsa_cdata_to_evp_pkey(rsa_cdata)
- return _RSAPublicKey(self, rsa_cdata, evp_pkey)
- else:
- self._handle_key_loading_error()
- def load_der_parameters(self, data: bytes) -> dh.DHParameters:
- mem_bio = self._bytes_to_bio(data)
- dh_cdata = self._lib.d2i_DHparams_bio(mem_bio.bio, self._ffi.NULL)
- if dh_cdata != self._ffi.NULL:
- dh_cdata = self._ffi.gc(dh_cdata, self._lib.DH_free)
- return _DHParameters(self, dh_cdata)
- elif self._lib.Cryptography_HAS_EVP_PKEY_DHX:
- # We check to see if the is dhx.
- self._consume_errors()
- res = self._lib.BIO_reset(mem_bio.bio)
- self.openssl_assert(res == 1)
- dh_cdata = self._lib.Cryptography_d2i_DHxparams_bio(
- mem_bio.bio, self._ffi.NULL
- )
- if dh_cdata != self._ffi.NULL:
- dh_cdata = self._ffi.gc(dh_cdata, self._lib.DH_free)
- return _DHParameters(self, dh_cdata)
- self._handle_key_loading_error()
- def _cert2ossl(self, cert: x509.Certificate) -> typing.Any:
- data = cert.public_bytes(serialization.Encoding.DER)
- mem_bio = self._bytes_to_bio(data)
- x509 = self._lib.d2i_X509_bio(mem_bio.bio, self._ffi.NULL)
- self.openssl_assert(x509 != self._ffi.NULL)
- x509 = self._ffi.gc(x509, self._lib.X509_free)
- return x509
- def _ossl2cert(self, x509: typing.Any) -> x509.Certificate:
- bio = self._create_mem_bio_gc()
- res = self._lib.i2d_X509_bio(bio, x509)
- self.openssl_assert(res == 1)
- return rust_x509.load_der_x509_certificate(self._read_mem_bio(bio))
- def _csr2ossl(self, csr: x509.CertificateSigningRequest) -> typing.Any:
- data = csr.public_bytes(serialization.Encoding.DER)
- mem_bio = self._bytes_to_bio(data)
- x509_req = self._lib.d2i_X509_REQ_bio(mem_bio.bio, self._ffi.NULL)
- self.openssl_assert(x509_req != self._ffi.NULL)
- x509_req = self._ffi.gc(x509_req, self._lib.X509_REQ_free)
- return x509_req
- def _ossl2csr(
- self, x509_req: typing.Any
- ) -> x509.CertificateSigningRequest:
- bio = self._create_mem_bio_gc()
- res = self._lib.i2d_X509_REQ_bio(bio, x509_req)
- self.openssl_assert(res == 1)
- return rust_x509.load_der_x509_csr(self._read_mem_bio(bio))
- def _crl2ossl(self, crl: x509.CertificateRevocationList) -> typing.Any:
- data = crl.public_bytes(serialization.Encoding.DER)
- mem_bio = self._bytes_to_bio(data)
- x509_crl = self._lib.d2i_X509_CRL_bio(mem_bio.bio, self._ffi.NULL)
- self.openssl_assert(x509_crl != self._ffi.NULL)
- x509_crl = self._ffi.gc(x509_crl, self._lib.X509_CRL_free)
- return x509_crl
- def _ossl2crl(
- self, x509_crl: typing.Any
- ) -> x509.CertificateRevocationList:
- bio = self._create_mem_bio_gc()
- res = self._lib.i2d_X509_CRL_bio(bio, x509_crl)
- self.openssl_assert(res == 1)
- return rust_x509.load_der_x509_crl(self._read_mem_bio(bio))
- def _crl_is_signature_valid(
- self,
- crl: x509.CertificateRevocationList,
- public_key: CERTIFICATE_ISSUER_PUBLIC_KEY_TYPES,
- ) -> bool:
- if not isinstance(
- public_key,
- (
- _DSAPublicKey,
- _RSAPublicKey,
- _EllipticCurvePublicKey,
- ),
- ):
- raise TypeError(
- "Expecting one of DSAPublicKey, RSAPublicKey,"
- " or EllipticCurvePublicKey."
- )
- x509_crl = self._crl2ossl(crl)
- res = self._lib.X509_CRL_verify(x509_crl, public_key._evp_pkey)
- if res != 1:
- self._consume_errors()
- return False
- return True
- def _csr_is_signature_valid(
- self, csr: x509.CertificateSigningRequest
- ) -> bool:
- x509_req = self._csr2ossl(csr)
- pkey = self._lib.X509_REQ_get_pubkey(x509_req)
- self.openssl_assert(pkey != self._ffi.NULL)
- pkey = self._ffi.gc(pkey, self._lib.EVP_PKEY_free)
- res = self._lib.X509_REQ_verify(x509_req, pkey)
- if res != 1:
- self._consume_errors()
- return False
- return True
- def _check_keys_correspond(self, key1, key2):
- if self._lib.EVP_PKEY_cmp(key1._evp_pkey, key2._evp_pkey) != 1:
- raise ValueError("Keys do not correspond")
- def _load_key(self, openssl_read_func, convert_func, data, password):
- mem_bio = self._bytes_to_bio(data)
- userdata = self._ffi.new("CRYPTOGRAPHY_PASSWORD_DATA *")
- if password is not None:
- utils._check_byteslike("password", password)
- password_ptr = self._ffi.from_buffer(password)
- userdata.password = password_ptr
- userdata.length = len(password)
- evp_pkey = openssl_read_func(
- mem_bio.bio,
- self._ffi.NULL,
- self._ffi.addressof(
- self._lib._original_lib, "Cryptography_pem_password_cb"
- ),
- userdata,
- )
- if evp_pkey == self._ffi.NULL:
- if userdata.error != 0:
- self._consume_errors()
- if userdata.error == -1:
- raise TypeError(
- "Password was not given but private key is encrypted"
- )
- else:
- assert userdata.error == -2
- raise ValueError(
- "Passwords longer than {} bytes are not supported "
- "by this backend.".format(userdata.maxsize - 1)
- )
- else:
- self._handle_key_loading_error()
- # In OpenSSL 3.0.0-alpha15 there exist scenarios where the key will
- # successfully load but errors are still put on the stack. Tracked
- # as https://github.com/openssl/openssl/issues/14996
- self._consume_errors()
- evp_pkey = self._ffi.gc(evp_pkey, self._lib.EVP_PKEY_free)
- if password is not None and userdata.called == 0:
- raise TypeError(
- "Password was given but private key is not encrypted."
- )
- assert (
- password is not None and userdata.called == 1
- ) or password is None
- return convert_func(evp_pkey)
- def _handle_key_loading_error(self) -> typing.NoReturn:
- errors = self._consume_errors()
- if not errors:
- raise ValueError(
- "Could not deserialize key data. The data may be in an "
- "incorrect format or it may be encrypted with an unsupported "
- "algorithm."
- )
- elif (
- errors[0]._lib_reason_match(
- self._lib.ERR_LIB_EVP, self._lib.EVP_R_BAD_DECRYPT
- )
- or errors[0]._lib_reason_match(
- self._lib.ERR_LIB_PKCS12,
- self._lib.PKCS12_R_PKCS12_CIPHERFINAL_ERROR,
- )
- or (
- self._lib.Cryptography_HAS_PROVIDERS
- and errors[0]._lib_reason_match(
- self._lib.ERR_LIB_PROV,
- self._lib.PROV_R_BAD_DECRYPT,
- )
- )
- ):
- raise ValueError("Bad decrypt. Incorrect password?")
- elif any(
- error._lib_reason_match(
- self._lib.ERR_LIB_EVP,
- self._lib.EVP_R_UNSUPPORTED_PRIVATE_KEY_ALGORITHM,
- )
- for error in errors
- ):
- raise ValueError("Unsupported public key algorithm.")
- else:
- errors_with_text = binding._errors_with_text(errors)
- raise ValueError(
- "Could not deserialize key data. The data may be in an "
- "incorrect format, it may be encrypted with an unsupported "
- "algorithm, or it may be an unsupported key type (e.g. EC "
- "curves with explicit parameters).",
- errors_with_text,
- )
- def elliptic_curve_supported(self, curve: ec.EllipticCurve) -> bool:
- try:
- curve_nid = self._elliptic_curve_to_nid(curve)
- except UnsupportedAlgorithm:
- curve_nid = self._lib.NID_undef
- group = self._lib.EC_GROUP_new_by_curve_name(curve_nid)
- if group == self._ffi.NULL:
- self._consume_errors()
- return False
- else:
- self.openssl_assert(curve_nid != self._lib.NID_undef)
- self._lib.EC_GROUP_free(group)
- return True
- def elliptic_curve_signature_algorithm_supported(
- self,
- signature_algorithm: ec.EllipticCurveSignatureAlgorithm,
- curve: ec.EllipticCurve,
- ) -> bool:
- # We only support ECDSA right now.
- if not isinstance(signature_algorithm, ec.ECDSA):
- return False
- return self.elliptic_curve_supported(curve)
- def generate_elliptic_curve_private_key(
- self, curve: ec.EllipticCurve
- ) -> ec.EllipticCurvePrivateKey:
- """
- Generate a new private key on the named curve.
- """
- if self.elliptic_curve_supported(curve):
- ec_cdata = self._ec_key_new_by_curve(curve)
- res = self._lib.EC_KEY_generate_key(ec_cdata)
- self.openssl_assert(res == 1)
- evp_pkey = self._ec_cdata_to_evp_pkey(ec_cdata)
- return _EllipticCurvePrivateKey(self, ec_cdata, evp_pkey)
- else:
- raise UnsupportedAlgorithm(
- "Backend object does not support {}.".format(curve.name),
- _Reasons.UNSUPPORTED_ELLIPTIC_CURVE,
- )
- def load_elliptic_curve_private_numbers(
- self, numbers: ec.EllipticCurvePrivateNumbers
- ) -> ec.EllipticCurvePrivateKey:
- public = numbers.public_numbers
- ec_cdata = self._ec_key_new_by_curve(public.curve)
- private_value = self._ffi.gc(
- self._int_to_bn(numbers.private_value), self._lib.BN_clear_free
- )
- res = self._lib.EC_KEY_set_private_key(ec_cdata, private_value)
- if res != 1:
- self._consume_errors()
- raise ValueError("Invalid EC key.")
- self._ec_key_set_public_key_affine_coordinates(
- ec_cdata, public.x, public.y
- )
- evp_pkey = self._ec_cdata_to_evp_pkey(ec_cdata)
- return _EllipticCurvePrivateKey(self, ec_cdata, evp_pkey)
- def load_elliptic_curve_public_numbers(
- self, numbers: ec.EllipticCurvePublicNumbers
- ) -> ec.EllipticCurvePublicKey:
- ec_cdata = self._ec_key_new_by_curve(numbers.curve)
- self._ec_key_set_public_key_affine_coordinates(
- ec_cdata, numbers.x, numbers.y
- )
- evp_pkey = self._ec_cdata_to_evp_pkey(ec_cdata)
- return _EllipticCurvePublicKey(self, ec_cdata, evp_pkey)
- def load_elliptic_curve_public_bytes(
- self, curve: ec.EllipticCurve, point_bytes: bytes
- ) -> ec.EllipticCurvePublicKey:
- ec_cdata = self._ec_key_new_by_curve(curve)
- group = self._lib.EC_KEY_get0_group(ec_cdata)
- self.openssl_assert(group != self._ffi.NULL)
- point = self._lib.EC_POINT_new(group)
- self.openssl_assert(point != self._ffi.NULL)
- point = self._ffi.gc(point, self._lib.EC_POINT_free)
- with self._tmp_bn_ctx() as bn_ctx:
- res = self._lib.EC_POINT_oct2point(
- group, point, point_bytes, len(point_bytes), bn_ctx
- )
- if res != 1:
- self._consume_errors()
- raise ValueError("Invalid public bytes for the given curve")
- res = self._lib.EC_KEY_set_public_key(ec_cdata, point)
- self.openssl_assert(res == 1)
- evp_pkey = self._ec_cdata_to_evp_pkey(ec_cdata)
- return _EllipticCurvePublicKey(self, ec_cdata, evp_pkey)
- def derive_elliptic_curve_private_key(
- self, private_value: int, curve: ec.EllipticCurve
- ) -> ec.EllipticCurvePrivateKey:
- ec_cdata = self._ec_key_new_by_curve(curve)
- get_func, group = self._ec_key_determine_group_get_func(ec_cdata)
- point = self._lib.EC_POINT_new(group)
- self.openssl_assert(point != self._ffi.NULL)
- point = self._ffi.gc(point, self._lib.EC_POINT_free)
- value = self._int_to_bn(private_value)
- value = self._ffi.gc(value, self._lib.BN_clear_free)
- with self._tmp_bn_ctx() as bn_ctx:
- res = self._lib.EC_POINT_mul(
- group, point, value, self._ffi.NULL, self._ffi.NULL, bn_ctx
- )
- self.openssl_assert(res == 1)
- bn_x = self._lib.BN_CTX_get(bn_ctx)
- bn_y = self._lib.BN_CTX_get(bn_ctx)
- res = get_func(group, point, bn_x, bn_y, bn_ctx)
- if res != 1:
- self._consume_errors()
- raise ValueError("Unable to derive key from private_value")
- res = self._lib.EC_KEY_set_public_key(ec_cdata, point)
- self.openssl_assert(res == 1)
- private = self._int_to_bn(private_value)
- private = self._ffi.gc(private, self._lib.BN_clear_free)
- res = self._lib.EC_KEY_set_private_key(ec_cdata, private)
- self.openssl_assert(res == 1)
- evp_pkey = self._ec_cdata_to_evp_pkey(ec_cdata)
- return _EllipticCurvePrivateKey(self, ec_cdata, evp_pkey)
- def _ec_key_new_by_curve(self, curve: ec.EllipticCurve):
- curve_nid = self._elliptic_curve_to_nid(curve)
- return self._ec_key_new_by_curve_nid(curve_nid)
- def _ec_key_new_by_curve_nid(self, curve_nid: int):
- ec_cdata = self._lib.EC_KEY_new_by_curve_name(curve_nid)
- self.openssl_assert(ec_cdata != self._ffi.NULL)
- return self._ffi.gc(ec_cdata, self._lib.EC_KEY_free)
- def elliptic_curve_exchange_algorithm_supported(
- self, algorithm: ec.ECDH, curve: ec.EllipticCurve
- ) -> bool:
- if self._fips_enabled and not isinstance(
- curve, self._fips_ecdh_curves
- ):
- return False
- return self.elliptic_curve_supported(curve) and isinstance(
- algorithm, ec.ECDH
- )
- def _ec_cdata_to_evp_pkey(self, ec_cdata):
- evp_pkey = self._create_evp_pkey_gc()
- res = self._lib.EVP_PKEY_set1_EC_KEY(evp_pkey, ec_cdata)
- self.openssl_assert(res == 1)
- return evp_pkey
- def _elliptic_curve_to_nid(self, curve: ec.EllipticCurve) -> int:
- """
- Get the NID for a curve name.
- """
- curve_aliases = {"secp192r1": "prime192v1", "secp256r1": "prime256v1"}
- curve_name = curve_aliases.get(curve.name, curve.name)
- curve_nid = self._lib.OBJ_sn2nid(curve_name.encode())
- if curve_nid == self._lib.NID_undef:
- raise UnsupportedAlgorithm(
- "{} is not a supported elliptic curve".format(curve.name),
- _Reasons.UNSUPPORTED_ELLIPTIC_CURVE,
- )
- return curve_nid
- @contextmanager
- def _tmp_bn_ctx(self):
- bn_ctx = self._lib.BN_CTX_new()
- self.openssl_assert(bn_ctx != self._ffi.NULL)
- bn_ctx = self._ffi.gc(bn_ctx, self._lib.BN_CTX_free)
- self._lib.BN_CTX_start(bn_ctx)
- try:
- yield bn_ctx
- finally:
- self._lib.BN_CTX_end(bn_ctx)
- def _ec_key_determine_group_get_func(self, ctx):
- """
- Given an EC_KEY determine the group and what function is required to
- get point coordinates.
- """
- self.openssl_assert(ctx != self._ffi.NULL)
- nid_two_field = self._lib.OBJ_sn2nid(b"characteristic-two-field")
- self.openssl_assert(nid_two_field != self._lib.NID_undef)
- group = self._lib.EC_KEY_get0_group(ctx)
- self.openssl_assert(group != self._ffi.NULL)
- method = self._lib.EC_GROUP_method_of(group)
- self.openssl_assert(method != self._ffi.NULL)
- nid = self._lib.EC_METHOD_get_field_type(method)
- self.openssl_assert(nid != self._lib.NID_undef)
- if nid == nid_two_field and self._lib.Cryptography_HAS_EC2M:
- get_func = self._lib.EC_POINT_get_affine_coordinates_GF2m
- else:
- get_func = self._lib.EC_POINT_get_affine_coordinates_GFp
- assert get_func
- return get_func, group
- def _ec_key_set_public_key_affine_coordinates(self, ctx, x: int, y: int):
- """
- Sets the public key point in the EC_KEY context to the affine x and y
- values.
- """
- if x < 0 or y < 0:
- raise ValueError(
- "Invalid EC key. Both x and y must be non-negative."
- )
- x = self._ffi.gc(self._int_to_bn(x), self._lib.BN_free)
- y = self._ffi.gc(self._int_to_bn(y), self._lib.BN_free)
- res = self._lib.EC_KEY_set_public_key_affine_coordinates(ctx, x, y)
- if res != 1:
- self._consume_errors()
- raise ValueError("Invalid EC key.")
- def _private_key_bytes(
- self,
- encoding: serialization.Encoding,
- format: serialization.PrivateFormat,
- encryption_algorithm: serialization.KeySerializationEncryption,
- key,
- evp_pkey,
- cdata,
- ) -> bytes:
- # validate argument types
- if not isinstance(encoding, serialization.Encoding):
- raise TypeError("encoding must be an item from the Encoding enum")
- if not isinstance(format, serialization.PrivateFormat):
- raise TypeError(
- "format must be an item from the PrivateFormat enum"
- )
- if not isinstance(
- encryption_algorithm, serialization.KeySerializationEncryption
- ):
- raise TypeError(
- "Encryption algorithm must be a KeySerializationEncryption "
- "instance"
- )
- # validate password
- if isinstance(encryption_algorithm, serialization.NoEncryption):
- password = b""
- elif isinstance(
- encryption_algorithm, serialization.BestAvailableEncryption
- ):
- password = encryption_algorithm.password
- if len(password) > 1023:
- raise ValueError(
- "Passwords longer than 1023 bytes are not supported by "
- "this backend"
- )
- else:
- raise ValueError("Unsupported encryption type")
- # PKCS8 + PEM/DER
- if format is serialization.PrivateFormat.PKCS8:
- if encoding is serialization.Encoding.PEM:
- write_bio = self._lib.PEM_write_bio_PKCS8PrivateKey
- elif encoding is serialization.Encoding.DER:
- write_bio = self._lib.i2d_PKCS8PrivateKey_bio
- else:
- raise ValueError("Unsupported encoding for PKCS8")
- return self._private_key_bytes_via_bio(
- write_bio, evp_pkey, password
- )
- # TraditionalOpenSSL + PEM/DER
- if format is serialization.PrivateFormat.TraditionalOpenSSL:
- if self._fips_enabled and not isinstance(
- encryption_algorithm, serialization.NoEncryption
- ):
- raise ValueError(
- "Encrypted traditional OpenSSL format is not "
- "supported in FIPS mode."
- )
- key_type = self._lib.EVP_PKEY_id(evp_pkey)
- if encoding is serialization.Encoding.PEM:
- if key_type == self._lib.EVP_PKEY_RSA:
- write_bio = self._lib.PEM_write_bio_RSAPrivateKey
- elif key_type == self._lib.EVP_PKEY_DSA:
- write_bio = self._lib.PEM_write_bio_DSAPrivateKey
- elif key_type == self._lib.EVP_PKEY_EC:
- write_bio = self._lib.PEM_write_bio_ECPrivateKey
- else:
- raise ValueError(
- "Unsupported key type for TraditionalOpenSSL"
- )
- return self._private_key_bytes_via_bio(
- write_bio, cdata, password
- )
- if encoding is serialization.Encoding.DER:
- if password:
- raise ValueError(
- "Encryption is not supported for DER encoded "
- "traditional OpenSSL keys"
- )
- if key_type == self._lib.EVP_PKEY_RSA:
- write_bio = self._lib.i2d_RSAPrivateKey_bio
- elif key_type == self._lib.EVP_PKEY_EC:
- write_bio = self._lib.i2d_ECPrivateKey_bio
- elif key_type == self._lib.EVP_PKEY_DSA:
- write_bio = self._lib.i2d_DSAPrivateKey_bio
- else:
- raise ValueError(
- "Unsupported key type for TraditionalOpenSSL"
- )
- return self._bio_func_output(write_bio, cdata)
- raise ValueError("Unsupported encoding for TraditionalOpenSSL")
- # OpenSSH + PEM
- if format is serialization.PrivateFormat.OpenSSH:
- if encoding is serialization.Encoding.PEM:
- return ssh.serialize_ssh_private_key(key, password)
- raise ValueError(
- "OpenSSH private key format can only be used"
- " with PEM encoding"
- )
- # Anything that key-specific code was supposed to handle earlier,
- # like Raw.
- raise ValueError("format is invalid with this key")
- def _private_key_bytes_via_bio(self, write_bio, evp_pkey, password):
- if not password:
- evp_cipher = self._ffi.NULL
- else:
- # This is a curated value that we will update over time.
- evp_cipher = self._lib.EVP_get_cipherbyname(b"aes-256-cbc")
- return self._bio_func_output(
- write_bio,
- evp_pkey,
- evp_cipher,
- password,
- len(password),
- self._ffi.NULL,
- self._ffi.NULL,
- )
- def _bio_func_output(self, write_bio, *args):
- bio = self._create_mem_bio_gc()
- res = write_bio(bio, *args)
- self.openssl_assert(res == 1)
- return self._read_mem_bio(bio)
- def _public_key_bytes(
- self,
- encoding: serialization.Encoding,
- format: serialization.PublicFormat,
- key,
- evp_pkey,
- cdata,
- ) -> bytes:
- if not isinstance(encoding, serialization.Encoding):
- raise TypeError("encoding must be an item from the Encoding enum")
- if not isinstance(format, serialization.PublicFormat):
- raise TypeError(
- "format must be an item from the PublicFormat enum"
- )
- # SubjectPublicKeyInfo + PEM/DER
- if format is serialization.PublicFormat.SubjectPublicKeyInfo:
- if encoding is serialization.Encoding.PEM:
- write_bio = self._lib.PEM_write_bio_PUBKEY
- elif encoding is serialization.Encoding.DER:
- write_bio = self._lib.i2d_PUBKEY_bio
- else:
- raise ValueError(
- "SubjectPublicKeyInfo works only with PEM or DER encoding"
- )
- return self._bio_func_output(write_bio, evp_pkey)
- # PKCS1 + PEM/DER
- if format is serialization.PublicFormat.PKCS1:
- # Only RSA is supported here.
- key_type = self._lib.EVP_PKEY_id(evp_pkey)
- if key_type != self._lib.EVP_PKEY_RSA:
- raise ValueError("PKCS1 format is supported only for RSA keys")
- if encoding is serialization.Encoding.PEM:
- write_bio = self._lib.PEM_write_bio_RSAPublicKey
- elif encoding is serialization.Encoding.DER:
- write_bio = self._lib.i2d_RSAPublicKey_bio
- else:
- raise ValueError("PKCS1 works only with PEM or DER encoding")
- return self._bio_func_output(write_bio, cdata)
- # OpenSSH + OpenSSH
- if format is serialization.PublicFormat.OpenSSH:
- if encoding is serialization.Encoding.OpenSSH:
- return ssh.serialize_ssh_public_key(key)
- raise ValueError(
- "OpenSSH format must be used with OpenSSH encoding"
- )
- # Anything that key-specific code was supposed to handle earlier,
- # like Raw, CompressedPoint, UncompressedPoint
- raise ValueError("format is invalid with this key")
- def dh_supported(self) -> bool:
- return not self._lib.CRYPTOGRAPHY_IS_BORINGSSL
- def generate_dh_parameters(
- self, generator: int, key_size: int
- ) -> dh.DHParameters:
- if key_size < dh._MIN_MODULUS_SIZE:
- raise ValueError(
- "DH key_size must be at least {} bits".format(
- dh._MIN_MODULUS_SIZE
- )
- )
- if generator not in (2, 5):
- raise ValueError("DH generator must be 2 or 5")
- dh_param_cdata = self._lib.DH_new()
- self.openssl_assert(dh_param_cdata != self._ffi.NULL)
- dh_param_cdata = self._ffi.gc(dh_param_cdata, self._lib.DH_free)
- res = self._lib.DH_generate_parameters_ex(
- dh_param_cdata, key_size, generator, self._ffi.NULL
- )
- self.openssl_assert(res == 1)
- return _DHParameters(self, dh_param_cdata)
- def _dh_cdata_to_evp_pkey(self, dh_cdata):
- evp_pkey = self._create_evp_pkey_gc()
- res = self._lib.EVP_PKEY_set1_DH(evp_pkey, dh_cdata)
- self.openssl_assert(res == 1)
- return evp_pkey
- def generate_dh_private_key(
- self, parameters: dh.DHParameters
- ) -> dh.DHPrivateKey:
- dh_key_cdata = _dh_params_dup(
- parameters._dh_cdata, self # type: ignore[attr-defined]
- )
- res = self._lib.DH_generate_key(dh_key_cdata)
- self.openssl_assert(res == 1)
- evp_pkey = self._dh_cdata_to_evp_pkey(dh_key_cdata)
- return _DHPrivateKey(self, dh_key_cdata, evp_pkey)
- def generate_dh_private_key_and_parameters(
- self, generator: int, key_size: int
- ) -> dh.DHPrivateKey:
- return self.generate_dh_private_key(
- self.generate_dh_parameters(generator, key_size)
- )
- def load_dh_private_numbers(
- self, numbers: dh.DHPrivateNumbers
- ) -> dh.DHPrivateKey:
- parameter_numbers = numbers.public_numbers.parameter_numbers
- dh_cdata = self._lib.DH_new()
- self.openssl_assert(dh_cdata != self._ffi.NULL)
- dh_cdata = self._ffi.gc(dh_cdata, self._lib.DH_free)
- p = self._int_to_bn(parameter_numbers.p)
- g = self._int_to_bn(parameter_numbers.g)
- if parameter_numbers.q is not None:
- q = self._int_to_bn(parameter_numbers.q)
- else:
- q = self._ffi.NULL
- pub_key = self._int_to_bn(numbers.public_numbers.y)
- priv_key = self._int_to_bn(numbers.x)
- res = self._lib.DH_set0_pqg(dh_cdata, p, q, g)
- self.openssl_assert(res == 1)
- res = self._lib.DH_set0_key(dh_cdata, pub_key, priv_key)
- self.openssl_assert(res == 1)
- codes = self._ffi.new("int[]", 1)
- res = self._lib.Cryptography_DH_check(dh_cdata, codes)
- self.openssl_assert(res == 1)
- # DH_check will return DH_NOT_SUITABLE_GENERATOR if p % 24 does not
- # equal 11 when the generator is 2 (a quadratic nonresidue).
- # We want to ignore that error because p % 24 == 23 is also fine.
- # Specifically, g is then a quadratic residue. Within the context of
- # Diffie-Hellman this means it can only generate half the possible
- # values. That sounds bad, but quadratic nonresidues leak a bit of
- # the key to the attacker in exchange for having the full key space
- # available. See: https://crypto.stackexchange.com/questions/12961
- if codes[0] != 0 and not (
- parameter_numbers.g == 2
- and codes[0] ^ self._lib.DH_NOT_SUITABLE_GENERATOR == 0
- ):
- raise ValueError("DH private numbers did not pass safety checks.")
- evp_pkey = self._dh_cdata_to_evp_pkey(dh_cdata)
- return _DHPrivateKey(self, dh_cdata, evp_pkey)
- def load_dh_public_numbers(
- self, numbers: dh.DHPublicNumbers
- ) -> dh.DHPublicKey:
- dh_cdata = self._lib.DH_new()
- self.openssl_assert(dh_cdata != self._ffi.NULL)
- dh_cdata = self._ffi.gc(dh_cdata, self._lib.DH_free)
- parameter_numbers = numbers.parameter_numbers
- p = self._int_to_bn(parameter_numbers.p)
- g = self._int_to_bn(parameter_numbers.g)
- if parameter_numbers.q is not None:
- q = self._int_to_bn(parameter_numbers.q)
- else:
- q = self._ffi.NULL
- pub_key = self._int_to_bn(numbers.y)
- res = self._lib.DH_set0_pqg(dh_cdata, p, q, g)
- self.openssl_assert(res == 1)
- res = self._lib.DH_set0_key(dh_cdata, pub_key, self._ffi.NULL)
- self.openssl_assert(res == 1)
- evp_pkey = self._dh_cdata_to_evp_pkey(dh_cdata)
- return _DHPublicKey(self, dh_cdata, evp_pkey)
- def load_dh_parameter_numbers(
- self, numbers: dh.DHParameterNumbers
- ) -> dh.DHParameters:
- dh_cdata = self._lib.DH_new()
- self.openssl_assert(dh_cdata != self._ffi.NULL)
- dh_cdata = self._ffi.gc(dh_cdata, self._lib.DH_free)
- p = self._int_to_bn(numbers.p)
- g = self._int_to_bn(numbers.g)
- if numbers.q is not None:
- q = self._int_to_bn(numbers.q)
- else:
- q = self._ffi.NULL
- res = self._lib.DH_set0_pqg(dh_cdata, p, q, g)
- self.openssl_assert(res == 1)
- return _DHParameters(self, dh_cdata)
- def dh_parameters_supported(
- self, p: int, g: int, q: typing.Optional[int] = None
- ) -> bool:
- dh_cdata = self._lib.DH_new()
- self.openssl_assert(dh_cdata != self._ffi.NULL)
- dh_cdata = self._ffi.gc(dh_cdata, self._lib.DH_free)
- p = self._int_to_bn(p)
- g = self._int_to_bn(g)
- if q is not None:
- q = self._int_to_bn(q)
- else:
- q = self._ffi.NULL
- res = self._lib.DH_set0_pqg(dh_cdata, p, q, g)
- self.openssl_assert(res == 1)
- codes = self._ffi.new("int[]", 1)
- res = self._lib.Cryptography_DH_check(dh_cdata, codes)
- self.openssl_assert(res == 1)
- return codes[0] == 0
- def dh_x942_serialization_supported(self) -> bool:
- return self._lib.Cryptography_HAS_EVP_PKEY_DHX == 1
- def x25519_load_public_bytes(self, data: bytes) -> x25519.X25519PublicKey:
- # When we drop support for CRYPTOGRAPHY_OPENSSL_LESS_THAN_111 we can
- # switch this to EVP_PKEY_new_raw_public_key
- if len(data) != 32:
- raise ValueError("An X25519 public key is 32 bytes long")
- evp_pkey = self._create_evp_pkey_gc()
- res = self._lib.EVP_PKEY_set_type(evp_pkey, self._lib.NID_X25519)
- self.openssl_assert(res == 1)
- res = self._lib.EVP_PKEY_set1_tls_encodedpoint(
- evp_pkey, data, len(data)
- )
- self.openssl_assert(res == 1)
- return _X25519PublicKey(self, evp_pkey)
- def x25519_load_private_bytes(
- self, data: bytes
- ) -> x25519.X25519PrivateKey:
- # When we drop support for CRYPTOGRAPHY_OPENSSL_LESS_THAN_111 we can
- # switch this to EVP_PKEY_new_raw_private_key and drop the
- # zeroed_bytearray garbage.
- # OpenSSL only has facilities for loading PKCS8 formatted private
- # keys using the algorithm identifiers specified in
- # https://tools.ietf.org/html/draft-ietf-curdle-pkix-09.
- # This is the standard PKCS8 prefix for a 32 byte X25519 key.
- # The form is:
- # 0:d=0 hl=2 l= 46 cons: SEQUENCE
- # 2:d=1 hl=2 l= 1 prim: INTEGER :00
- # 5:d=1 hl=2 l= 5 cons: SEQUENCE
- # 7:d=2 hl=2 l= 3 prim: OBJECT :1.3.101.110
- # 12:d=1 hl=2 l= 34 prim: OCTET STRING (the key)
- # Of course there's a bit more complexity. In reality OCTET STRING
- # contains an OCTET STRING of length 32! So the last two bytes here
- # are \x04\x20, which is an OCTET STRING of length 32.
- if len(data) != 32:
- raise ValueError("An X25519 private key is 32 bytes long")
- pkcs8_prefix = b'0.\x02\x01\x000\x05\x06\x03+en\x04"\x04 '
- with self._zeroed_bytearray(48) as ba:
- ba[0:16] = pkcs8_prefix
- ba[16:] = data
- bio = self._bytes_to_bio(ba)
- evp_pkey = self._lib.d2i_PrivateKey_bio(bio.bio, self._ffi.NULL)
- self.openssl_assert(evp_pkey != self._ffi.NULL)
- evp_pkey = self._ffi.gc(evp_pkey, self._lib.EVP_PKEY_free)
- self.openssl_assert(
- self._lib.EVP_PKEY_id(evp_pkey) == self._lib.EVP_PKEY_X25519
- )
- return _X25519PrivateKey(self, evp_pkey)
- def _evp_pkey_keygen_gc(self, nid):
- evp_pkey_ctx = self._lib.EVP_PKEY_CTX_new_id(nid, self._ffi.NULL)
- self.openssl_assert(evp_pkey_ctx != self._ffi.NULL)
- evp_pkey_ctx = self._ffi.gc(evp_pkey_ctx, self._lib.EVP_PKEY_CTX_free)
- res = self._lib.EVP_PKEY_keygen_init(evp_pkey_ctx)
- self.openssl_assert(res == 1)
- evp_ppkey = self._ffi.new("EVP_PKEY **")
- res = self._lib.EVP_PKEY_keygen(evp_pkey_ctx, evp_ppkey)
- self.openssl_assert(res == 1)
- self.openssl_assert(evp_ppkey[0] != self._ffi.NULL)
- evp_pkey = self._ffi.gc(evp_ppkey[0], self._lib.EVP_PKEY_free)
- return evp_pkey
- def x25519_generate_key(self) -> x25519.X25519PrivateKey:
- evp_pkey = self._evp_pkey_keygen_gc(self._lib.NID_X25519)
- return _X25519PrivateKey(self, evp_pkey)
- def x25519_supported(self) -> bool:
- if self._fips_enabled:
- return False
- return not self._lib.CRYPTOGRAPHY_IS_LIBRESSL
- def x448_load_public_bytes(self, data: bytes) -> x448.X448PublicKey:
- if len(data) != 56:
- raise ValueError("An X448 public key is 56 bytes long")
- evp_pkey = self._lib.EVP_PKEY_new_raw_public_key(
- self._lib.NID_X448, self._ffi.NULL, data, len(data)
- )
- self.openssl_assert(evp_pkey != self._ffi.NULL)
- evp_pkey = self._ffi.gc(evp_pkey, self._lib.EVP_PKEY_free)
- return _X448PublicKey(self, evp_pkey)
- def x448_load_private_bytes(self, data: bytes) -> x448.X448PrivateKey:
- if len(data) != 56:
- raise ValueError("An X448 private key is 56 bytes long")
- data_ptr = self._ffi.from_buffer(data)
- evp_pkey = self._lib.EVP_PKEY_new_raw_private_key(
- self._lib.NID_X448, self._ffi.NULL, data_ptr, len(data)
- )
- self.openssl_assert(evp_pkey != self._ffi.NULL)
- evp_pkey = self._ffi.gc(evp_pkey, self._lib.EVP_PKEY_free)
- return _X448PrivateKey(self, evp_pkey)
- def x448_generate_key(self) -> x448.X448PrivateKey:
- evp_pkey = self._evp_pkey_keygen_gc(self._lib.NID_X448)
- return _X448PrivateKey(self, evp_pkey)
- def x448_supported(self) -> bool:
- if self._fips_enabled:
- return False
- return (
- not self._lib.CRYPTOGRAPHY_OPENSSL_LESS_THAN_111
- and not self._lib.CRYPTOGRAPHY_IS_BORINGSSL
- )
- def ed25519_supported(self) -> bool:
- if self._fips_enabled:
- return False
- return not self._lib.CRYPTOGRAPHY_OPENSSL_LESS_THAN_111B
- def ed25519_load_public_bytes(
- self, data: bytes
- ) -> ed25519.Ed25519PublicKey:
- utils._check_bytes("data", data)
- if len(data) != ed25519._ED25519_KEY_SIZE:
- raise ValueError("An Ed25519 public key is 32 bytes long")
- evp_pkey = self._lib.EVP_PKEY_new_raw_public_key(
- self._lib.NID_ED25519, self._ffi.NULL, data, len(data)
- )
- self.openssl_assert(evp_pkey != self._ffi.NULL)
- evp_pkey = self._ffi.gc(evp_pkey, self._lib.EVP_PKEY_free)
- return _Ed25519PublicKey(self, evp_pkey)
- def ed25519_load_private_bytes(
- self, data: bytes
- ) -> ed25519.Ed25519PrivateKey:
- if len(data) != ed25519._ED25519_KEY_SIZE:
- raise ValueError("An Ed25519 private key is 32 bytes long")
- utils._check_byteslike("data", data)
- data_ptr = self._ffi.from_buffer(data)
- evp_pkey = self._lib.EVP_PKEY_new_raw_private_key(
- self._lib.NID_ED25519, self._ffi.NULL, data_ptr, len(data)
- )
- self.openssl_assert(evp_pkey != self._ffi.NULL)
- evp_pkey = self._ffi.gc(evp_pkey, self._lib.EVP_PKEY_free)
- return _Ed25519PrivateKey(self, evp_pkey)
- def ed25519_generate_key(self) -> ed25519.Ed25519PrivateKey:
- evp_pkey = self._evp_pkey_keygen_gc(self._lib.NID_ED25519)
- return _Ed25519PrivateKey(self, evp_pkey)
- def ed448_supported(self) -> bool:
- if self._fips_enabled:
- return False
- return (
- not self._lib.CRYPTOGRAPHY_OPENSSL_LESS_THAN_111B
- and not self._lib.CRYPTOGRAPHY_IS_BORINGSSL
- )
- def ed448_load_public_bytes(self, data: bytes) -> ed448.Ed448PublicKey:
- utils._check_bytes("data", data)
- if len(data) != _ED448_KEY_SIZE:
- raise ValueError("An Ed448 public key is 57 bytes long")
- evp_pkey = self._lib.EVP_PKEY_new_raw_public_key(
- self._lib.NID_ED448, self._ffi.NULL, data, len(data)
- )
- self.openssl_assert(evp_pkey != self._ffi.NULL)
- evp_pkey = self._ffi.gc(evp_pkey, self._lib.EVP_PKEY_free)
- return _Ed448PublicKey(self, evp_pkey)
- def ed448_load_private_bytes(self, data: bytes) -> ed448.Ed448PrivateKey:
- utils._check_byteslike("data", data)
- if len(data) != _ED448_KEY_SIZE:
- raise ValueError("An Ed448 private key is 57 bytes long")
- data_ptr = self._ffi.from_buffer(data)
- evp_pkey = self._lib.EVP_PKEY_new_raw_private_key(
- self._lib.NID_ED448, self._ffi.NULL, data_ptr, len(data)
- )
- self.openssl_assert(evp_pkey != self._ffi.NULL)
- evp_pkey = self._ffi.gc(evp_pkey, self._lib.EVP_PKEY_free)
- return _Ed448PrivateKey(self, evp_pkey)
- def ed448_generate_key(self) -> ed448.Ed448PrivateKey:
- evp_pkey = self._evp_pkey_keygen_gc(self._lib.NID_ED448)
- return _Ed448PrivateKey(self, evp_pkey)
- def derive_scrypt(
- self,
- key_material: bytes,
- salt: bytes,
- length: int,
- n: int,
- r: int,
- p: int,
- ) -> bytes:
- buf = self._ffi.new("unsigned char[]", length)
- key_material_ptr = self._ffi.from_buffer(key_material)
- res = self._lib.EVP_PBE_scrypt(
- key_material_ptr,
- len(key_material),
- salt,
- len(salt),
- n,
- r,
- p,
- scrypt._MEM_LIMIT,
- buf,
- length,
- )
- if res != 1:
- errors = self._consume_errors_with_text()
- # memory required formula explained here:
- # https://blog.filippo.io/the-scrypt-parameters/
- min_memory = 128 * n * r // (1024**2)
- raise MemoryError(
- "Not enough memory to derive key. These parameters require"
- " {} MB of memory.".format(min_memory),
- errors,
- )
- return self._ffi.buffer(buf)[:]
- def aead_cipher_supported(self, cipher) -> bool:
- cipher_name = aead._aead_cipher_name(cipher)
- if self._fips_enabled and cipher_name not in self._fips_aead:
- return False
- # SIV isn't loaded through get_cipherbyname but instead a new fetch API
- # only available in 3.0+. But if we know we're on 3.0+ then we know
- # it's supported.
- if cipher_name.endswith(b"-siv"):
- return self._lib.CRYPTOGRAPHY_OPENSSL_300_OR_GREATER == 1
- else:
- return (
- self._lib.EVP_get_cipherbyname(cipher_name) != self._ffi.NULL
- )
- @contextlib.contextmanager
- def _zeroed_bytearray(self, length: int) -> typing.Iterator[bytearray]:
- """
- This method creates a bytearray, which we copy data into (hopefully
- also from a mutable buffer that can be dynamically erased!), and then
- zero when we're done.
- """
- ba = bytearray(length)
- try:
- yield ba
- finally:
- self._zero_data(ba, length)
- def _zero_data(self, data, length: int) -> None:
- # We clear things this way because at the moment we're not
- # sure of a better way that can guarantee it overwrites the
- # memory of a bytearray and doesn't just replace the underlying char *.
- for i in range(length):
- data[i] = 0
- @contextlib.contextmanager
- def _zeroed_null_terminated_buf(self, data):
- """
- This method takes bytes, which can be a bytestring or a mutable
- buffer like a bytearray, and yields a null-terminated version of that
- data. This is required because PKCS12_parse doesn't take a length with
- its password char * and ffi.from_buffer doesn't provide null
- termination. So, to support zeroing the data via bytearray we
- need to build this ridiculous construct that copies the memory, but
- zeroes it after use.
- """
- if data is None:
- yield self._ffi.NULL
- else:
- data_len = len(data)
- buf = self._ffi.new("char[]", data_len + 1)
- self._ffi.memmove(buf, data, data_len)
- try:
- yield buf
- finally:
- # Cast to a uint8_t * so we can assign by integer
- self._zero_data(self._ffi.cast("uint8_t *", buf), data_len)
- def load_key_and_certificates_from_pkcs12(
- self, data: bytes, password: typing.Optional[bytes]
- ) -> typing.Tuple[
- typing.Optional[PRIVATE_KEY_TYPES],
- typing.Optional[x509.Certificate],
- typing.List[x509.Certificate],
- ]:
- pkcs12 = self.load_pkcs12(data, password)
- return (
- pkcs12.key,
- pkcs12.cert.certificate if pkcs12.cert else None,
- [cert.certificate for cert in pkcs12.additional_certs],
- )
- def load_pkcs12(
- self, data: bytes, password: typing.Optional[bytes]
- ) -> PKCS12KeyAndCertificates:
- if password is not None:
- utils._check_byteslike("password", password)
- bio = self._bytes_to_bio(data)
- p12 = self._lib.d2i_PKCS12_bio(bio.bio, self._ffi.NULL)
- if p12 == self._ffi.NULL:
- self._consume_errors()
- raise ValueError("Could not deserialize PKCS12 data")
- p12 = self._ffi.gc(p12, self._lib.PKCS12_free)
- evp_pkey_ptr = self._ffi.new("EVP_PKEY **")
- x509_ptr = self._ffi.new("X509 **")
- sk_x509_ptr = self._ffi.new("Cryptography_STACK_OF_X509 **")
- with self._zeroed_null_terminated_buf(password) as password_buf:
- res = self._lib.PKCS12_parse(
- p12, password_buf, evp_pkey_ptr, x509_ptr, sk_x509_ptr
- )
- # Workaround for
- # https://github.com/libressl-portable/portable/issues/659
- if self._lib.CRYPTOGRAPHY_LIBRESSL_LESS_THAN_340:
- self._consume_errors()
- if res == 0:
- self._consume_errors()
- raise ValueError("Invalid password or PKCS12 data")
- cert = None
- key = None
- additional_certificates = []
- if evp_pkey_ptr[0] != self._ffi.NULL:
- evp_pkey = self._ffi.gc(evp_pkey_ptr[0], self._lib.EVP_PKEY_free)
- key = self._evp_pkey_to_private_key(evp_pkey)
- if x509_ptr[0] != self._ffi.NULL:
- x509 = self._ffi.gc(x509_ptr[0], self._lib.X509_free)
- cert_obj = self._ossl2cert(x509)
- name = None
- maybe_name = self._lib.X509_alias_get0(x509, self._ffi.NULL)
- if maybe_name != self._ffi.NULL:
- name = self._ffi.string(maybe_name)
- cert = PKCS12Certificate(cert_obj, name)
- if sk_x509_ptr[0] != self._ffi.NULL:
- sk_x509 = self._ffi.gc(sk_x509_ptr[0], self._lib.sk_X509_free)
- num = self._lib.sk_X509_num(sk_x509_ptr[0])
- # In OpenSSL < 3.0.0 PKCS12 parsing reverses the order of the
- # certificates.
- indices: typing.Iterable[int]
- if (
- self._lib.CRYPTOGRAPHY_OPENSSL_300_OR_GREATER
- or self._lib.CRYPTOGRAPHY_IS_BORINGSSL
- ):
- indices = range(num)
- else:
- indices = reversed(range(num))
- for i in indices:
- x509 = self._lib.sk_X509_value(sk_x509, i)
- self.openssl_assert(x509 != self._ffi.NULL)
- x509 = self._ffi.gc(x509, self._lib.X509_free)
- addl_cert = self._ossl2cert(x509)
- addl_name = None
- maybe_name = self._lib.X509_alias_get0(x509, self._ffi.NULL)
- if maybe_name != self._ffi.NULL:
- addl_name = self._ffi.string(maybe_name)
- additional_certificates.append(
- PKCS12Certificate(addl_cert, addl_name)
- )
- return PKCS12KeyAndCertificates(key, cert, additional_certificates)
- def serialize_key_and_certificates_to_pkcs12(
- self,
- name: typing.Optional[bytes],
- key: typing.Optional[_ALLOWED_PKCS12_TYPES],
- cert: typing.Optional[x509.Certificate],
- cas: typing.Optional[typing.List[_PKCS12_CAS_TYPES]],
- encryption_algorithm: serialization.KeySerializationEncryption,
- ) -> bytes:
- password = None
- if name is not None:
- utils._check_bytes("name", name)
- if isinstance(encryption_algorithm, serialization.NoEncryption):
- nid_cert = -1
- nid_key = -1
- pkcs12_iter = 0
- mac_iter = 0
- elif isinstance(
- encryption_algorithm, serialization.BestAvailableEncryption
- ):
- # PKCS12 encryption is hopeless trash and can never be fixed.
- # This is the least terrible option.
- nid_cert = self._lib.NID_pbe_WithSHA1And3_Key_TripleDES_CBC
- nid_key = self._lib.NID_pbe_WithSHA1And3_Key_TripleDES_CBC
- # At least we can set this higher than OpenSSL's default
- pkcs12_iter = 20000
- # mac_iter chosen for compatibility reasons, see:
- # https://www.openssl.org/docs/man1.1.1/man3/PKCS12_create.html
- # Did we mention how lousy PKCS12 encryption is?
- mac_iter = 1
- password = encryption_algorithm.password
- else:
- raise ValueError("Unsupported key encryption type")
- if cas is None or len(cas) == 0:
- sk_x509 = self._ffi.NULL
- else:
- sk_x509 = self._lib.sk_X509_new_null()
- sk_x509 = self._ffi.gc(sk_x509, self._lib.sk_X509_free)
- # This list is to keep the x509 values alive until end of function
- ossl_cas = []
- for ca in cas:
- if isinstance(ca, PKCS12Certificate):
- ca_alias = ca.friendly_name
- ossl_ca = self._cert2ossl(ca.certificate)
- with self._zeroed_null_terminated_buf(
- ca_alias
- ) as ca_name_buf:
- res = self._lib.X509_alias_set1(
- ossl_ca, ca_name_buf, -1
- )
- self.openssl_assert(res == 1)
- else:
- ossl_ca = self._cert2ossl(ca)
- ossl_cas.append(ossl_ca)
- res = self._lib.sk_X509_push(sk_x509, ossl_ca)
- backend.openssl_assert(res >= 1)
- with self._zeroed_null_terminated_buf(password) as password_buf:
- with self._zeroed_null_terminated_buf(name) as name_buf:
- ossl_cert = self._cert2ossl(cert) if cert else self._ffi.NULL
- if key is not None:
- evp_pkey = key._evp_pkey # type: ignore[union-attr]
- else:
- evp_pkey = self._ffi.NULL
- p12 = self._lib.PKCS12_create(
- password_buf,
- name_buf,
- evp_pkey,
- ossl_cert,
- sk_x509,
- nid_key,
- nid_cert,
- pkcs12_iter,
- mac_iter,
- 0,
- )
- self.openssl_assert(p12 != self._ffi.NULL)
- p12 = self._ffi.gc(p12, self._lib.PKCS12_free)
- bio = self._create_mem_bio_gc()
- res = self._lib.i2d_PKCS12_bio(bio, p12)
- self.openssl_assert(res > 0)
- return self._read_mem_bio(bio)
- def poly1305_supported(self) -> bool:
- if self._fips_enabled:
- return False
- return self._lib.Cryptography_HAS_POLY1305 == 1
- def create_poly1305_ctx(self, key: bytes) -> _Poly1305Context:
- utils._check_byteslike("key", key)
- if len(key) != _POLY1305_KEY_SIZE:
- raise ValueError("A poly1305 key is 32 bytes long")
- return _Poly1305Context(self, key)
- def pkcs7_supported(self) -> bool:
- return not self._lib.CRYPTOGRAPHY_IS_BORINGSSL
- def load_pem_pkcs7_certificates(
- self, data: bytes
- ) -> typing.List[x509.Certificate]:
- utils._check_bytes("data", data)
- bio = self._bytes_to_bio(data)
- p7 = self._lib.PEM_read_bio_PKCS7(
- bio.bio, self._ffi.NULL, self._ffi.NULL, self._ffi.NULL
- )
- if p7 == self._ffi.NULL:
- self._consume_errors()
- raise ValueError("Unable to parse PKCS7 data")
- p7 = self._ffi.gc(p7, self._lib.PKCS7_free)
- return self._load_pkcs7_certificates(p7)
- def load_der_pkcs7_certificates(
- self, data: bytes
- ) -> typing.List[x509.Certificate]:
- utils._check_bytes("data", data)
- bio = self._bytes_to_bio(data)
- p7 = self._lib.d2i_PKCS7_bio(bio.bio, self._ffi.NULL)
- if p7 == self._ffi.NULL:
- self._consume_errors()
- raise ValueError("Unable to parse PKCS7 data")
- p7 = self._ffi.gc(p7, self._lib.PKCS7_free)
- return self._load_pkcs7_certificates(p7)
- def _load_pkcs7_certificates(self, p7):
- nid = self._lib.OBJ_obj2nid(p7.type)
- self.openssl_assert(nid != self._lib.NID_undef)
- if nid != self._lib.NID_pkcs7_signed:
- raise UnsupportedAlgorithm(
- "Only basic signed structures are currently supported. NID"
- " for this data was {}".format(nid),
- _Reasons.UNSUPPORTED_SERIALIZATION,
- )
- sk_x509 = p7.d.sign.cert
- num = self._lib.sk_X509_num(sk_x509)
- certs = []
- for i in range(num):
- x509 = self._lib.sk_X509_value(sk_x509, i)
- self.openssl_assert(x509 != self._ffi.NULL)
- res = self._lib.X509_up_ref(x509)
- # When OpenSSL is less than 1.1.0 up_ref returns the current
- # refcount. On 1.1.0+ it returns 1 for success.
- self.openssl_assert(res >= 1)
- x509 = self._ffi.gc(x509, self._lib.X509_free)
- cert = self._ossl2cert(x509)
- certs.append(cert)
- return certs
- def pkcs7_serialize_certificates(
- self,
- certs: typing.List[x509.Certificate],
- encoding: serialization.Encoding,
- ):
- certs = list(certs)
- if not certs or not all(
- isinstance(cert, x509.Certificate) for cert in certs
- ):
- raise TypeError("certs must be a list of certs with length >= 1")
- if encoding not in (
- serialization.Encoding.PEM,
- serialization.Encoding.DER,
- ):
- raise TypeError("encoding must DER or PEM from the Encoding enum")
- certs_sk = self._lib.sk_X509_new_null()
- certs_sk = self._ffi.gc(certs_sk, self._lib.sk_X509_free)
- # This list is to keep the x509 values alive until end of function
- ossl_certs = []
- for cert in certs:
- ossl_cert = self._cert2ossl(cert)
- ossl_certs.append(ossl_cert)
- res = self._lib.sk_X509_push(certs_sk, ossl_cert)
- self.openssl_assert(res >= 1)
- # We use PKCS7_sign here because it creates the PKCS7 and PKCS7_SIGNED
- # structures for us rather than requiring manual assignment.
- p7 = self._lib.PKCS7_sign(
- self._ffi.NULL,
- self._ffi.NULL,
- certs_sk,
- self._ffi.NULL,
- self._lib.PKCS7_PARTIAL,
- )
- bio_out = self._create_mem_bio_gc()
- if encoding is serialization.Encoding.PEM:
- res = self._lib.PEM_write_bio_PKCS7_stream(
- bio_out, p7, self._ffi.NULL, 0
- )
- else:
- assert encoding is serialization.Encoding.DER
- res = self._lib.i2d_PKCS7_bio(bio_out, p7)
- self.openssl_assert(res == 1)
- return self._read_mem_bio(bio_out)
- def pkcs7_sign(
- self,
- builder: pkcs7.PKCS7SignatureBuilder,
- encoding: serialization.Encoding,
- options: typing.List[pkcs7.PKCS7Options],
- ) -> bytes:
- assert builder._data is not None
- bio = self._bytes_to_bio(builder._data)
- init_flags = self._lib.PKCS7_PARTIAL
- final_flags = 0
- if len(builder._additional_certs) == 0:
- certs = self._ffi.NULL
- else:
- certs = self._lib.sk_X509_new_null()
- certs = self._ffi.gc(certs, self._lib.sk_X509_free)
- # This list is to keep the x509 values alive until end of function
- ossl_certs = []
- for cert in builder._additional_certs:
- ossl_cert = self._cert2ossl(cert)
- ossl_certs.append(ossl_cert)
- res = self._lib.sk_X509_push(certs, ossl_cert)
- self.openssl_assert(res >= 1)
- if pkcs7.PKCS7Options.DetachedSignature in options:
- # Don't embed the data in the PKCS7 structure
- init_flags |= self._lib.PKCS7_DETACHED
- final_flags |= self._lib.PKCS7_DETACHED
- # This just inits a structure for us. However, there
- # are flags we need to set, joy.
- p7 = self._lib.PKCS7_sign(
- self._ffi.NULL,
- self._ffi.NULL,
- certs,
- self._ffi.NULL,
- init_flags,
- )
- self.openssl_assert(p7 != self._ffi.NULL)
- p7 = self._ffi.gc(p7, self._lib.PKCS7_free)
- signer_flags = 0
- # These flags are configurable on a per-signature basis
- # but we've deliberately chosen to make the API only allow
- # setting it across all signatures for now.
- if pkcs7.PKCS7Options.NoCapabilities in options:
- signer_flags |= self._lib.PKCS7_NOSMIMECAP
- elif pkcs7.PKCS7Options.NoAttributes in options:
- signer_flags |= self._lib.PKCS7_NOATTR
- if pkcs7.PKCS7Options.NoCerts in options:
- signer_flags |= self._lib.PKCS7_NOCERTS
- for certificate, private_key, hash_algorithm in builder._signers:
- ossl_cert = self._cert2ossl(certificate)
- md = self._evp_md_non_null_from_algorithm(hash_algorithm)
- p7signerinfo = self._lib.PKCS7_sign_add_signer(
- p7,
- ossl_cert,
- private_key._evp_pkey, # type: ignore[union-attr]
- md,
- signer_flags,
- )
- self.openssl_assert(p7signerinfo != self._ffi.NULL)
- for option in options:
- # DetachedSignature, NoCapabilities, and NoAttributes are already
- # handled so we just need to check these last two options.
- if option is pkcs7.PKCS7Options.Text:
- final_flags |= self._lib.PKCS7_TEXT
- elif option is pkcs7.PKCS7Options.Binary:
- final_flags |= self._lib.PKCS7_BINARY
- bio_out = self._create_mem_bio_gc()
- if encoding is serialization.Encoding.SMIME:
- # This finalizes the structure
- res = self._lib.SMIME_write_PKCS7(
- bio_out, p7, bio.bio, final_flags
- )
- elif encoding is serialization.Encoding.PEM:
- res = self._lib.PKCS7_final(p7, bio.bio, final_flags)
- self.openssl_assert(res == 1)
- res = self._lib.PEM_write_bio_PKCS7_stream(
- bio_out, p7, bio.bio, final_flags
- )
- else:
- assert encoding is serialization.Encoding.DER
- # We need to call finalize here becauase i2d_PKCS7_bio does not
- # finalize.
- res = self._lib.PKCS7_final(p7, bio.bio, final_flags)
- self.openssl_assert(res == 1)
- # OpenSSL 3.0 leaves a random bio error on the stack:
- # https://github.com/openssl/openssl/issues/16681
- if self._lib.CRYPTOGRAPHY_OPENSSL_300_OR_GREATER:
- self._consume_errors()
- res = self._lib.i2d_PKCS7_bio(bio_out, p7)
- self.openssl_assert(res == 1)
- return self._read_mem_bio(bio_out)
- class GetCipherByName:
- def __init__(self, fmt: str):
- self._fmt = fmt
- def __call__(self, backend: Backend, cipher: CipherAlgorithm, mode: Mode):
- cipher_name = self._fmt.format(cipher=cipher, mode=mode).lower()
- return backend._lib.EVP_get_cipherbyname(cipher_name.encode("ascii"))
- def _get_xts_cipher(backend: Backend, cipher: AES, mode):
- cipher_name = "aes-{}-xts".format(cipher.key_size // 2)
- return backend._lib.EVP_get_cipherbyname(cipher_name.encode("ascii"))
- backend = Backend()
|