123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160 |
- #
- # The Python Imaging Library.
- # $Id$
- #
- # global image statistics
- #
- # History:
- # 1996-04-05 fl Created
- # 1997-05-21 fl Added mask; added rms, var, stddev attributes
- # 1997-08-05 fl Added median
- # 1998-07-05 hk Fixed integer overflow error
- #
- # Notes:
- # This class shows how to implement delayed evaluation of attributes.
- # To get a certain value, simply access the corresponding attribute.
- # The __getattr__ dispatcher takes care of the rest.
- #
- # Copyright (c) Secret Labs AB 1997.
- # Copyright (c) Fredrik Lundh 1996-97.
- #
- # See the README file for information on usage and redistribution.
- #
- from __future__ import annotations
- import math
- from functools import cached_property
- from . import Image
- class Stat:
- def __init__(
- self, image_or_list: Image.Image | list[int], mask: Image.Image | None = None
- ) -> None:
- """
- Calculate statistics for the given image. If a mask is included,
- only the regions covered by that mask are included in the
- statistics. You can also pass in a previously calculated histogram.
- :param image: A PIL image, or a precalculated histogram.
- .. note::
- For a PIL image, calculations rely on the
- :py:meth:`~PIL.Image.Image.histogram` method. The pixel counts are
- grouped into 256 bins, even if the image has more than 8 bits per
- channel. So ``I`` and ``F`` mode images have a maximum ``mean``,
- ``median`` and ``rms`` of 255, and cannot have an ``extrema`` maximum
- of more than 255.
- :param mask: An optional mask.
- """
- if isinstance(image_or_list, Image.Image):
- self.h = image_or_list.histogram(mask)
- elif isinstance(image_or_list, list):
- self.h = image_or_list
- else:
- msg = "first argument must be image or list" # type: ignore[unreachable]
- raise TypeError(msg)
- self.bands = list(range(len(self.h) // 256))
- @cached_property
- def extrema(self) -> list[tuple[int, int]]:
- """
- Min/max values for each band in the image.
- .. note::
- This relies on the :py:meth:`~PIL.Image.Image.histogram` method, and
- simply returns the low and high bins used. This is correct for
- images with 8 bits per channel, but fails for other modes such as
- ``I`` or ``F``. Instead, use :py:meth:`~PIL.Image.Image.getextrema` to
- return per-band extrema for the image. This is more correct and
- efficient because, for non-8-bit modes, the histogram method uses
- :py:meth:`~PIL.Image.Image.getextrema` to determine the bins used.
- """
- def minmax(histogram: list[int]) -> tuple[int, int]:
- res_min, res_max = 255, 0
- for i in range(256):
- if histogram[i]:
- res_min = i
- break
- for i in range(255, -1, -1):
- if histogram[i]:
- res_max = i
- break
- return res_min, res_max
- return [minmax(self.h[i:]) for i in range(0, len(self.h), 256)]
- @cached_property
- def count(self) -> list[int]:
- """Total number of pixels for each band in the image."""
- return [sum(self.h[i : i + 256]) for i in range(0, len(self.h), 256)]
- @cached_property
- def sum(self) -> list[float]:
- """Sum of all pixels for each band in the image."""
- v = []
- for i in range(0, len(self.h), 256):
- layer_sum = 0.0
- for j in range(256):
- layer_sum += j * self.h[i + j]
- v.append(layer_sum)
- return v
- @cached_property
- def sum2(self) -> list[float]:
- """Squared sum of all pixels for each band in the image."""
- v = []
- for i in range(0, len(self.h), 256):
- sum2 = 0.0
- for j in range(256):
- sum2 += (j**2) * float(self.h[i + j])
- v.append(sum2)
- return v
- @cached_property
- def mean(self) -> list[float]:
- """Average (arithmetic mean) pixel level for each band in the image."""
- return [self.sum[i] / self.count[i] for i in self.bands]
- @cached_property
- def median(self) -> list[int]:
- """Median pixel level for each band in the image."""
- v = []
- for i in self.bands:
- s = 0
- half = self.count[i] // 2
- b = i * 256
- for j in range(256):
- s = s + self.h[b + j]
- if s > half:
- break
- v.append(j)
- return v
- @cached_property
- def rms(self) -> list[float]:
- """RMS (root-mean-square) for each band in the image."""
- return [math.sqrt(self.sum2[i] / self.count[i]) for i in self.bands]
- @cached_property
- def var(self) -> list[float]:
- """Variance for each band in the image."""
- return [
- (self.sum2[i] - (self.sum[i] ** 2.0) / self.count[i]) / self.count[i]
- for i in self.bands
- ]
- @cached_property
- def stddev(self) -> list[float]:
- """Standard deviation for each band in the image."""
- return [math.sqrt(self.var[i]) for i in self.bands]
- Global = Stat # compatibility
|